Suppr超能文献

机器学习预测美国印第安人和阿拉斯加原住民的痴呆症:一项回顾性队列研究。

Machine learning to predict dementia for American Indian and Alaska native peoples: a retrospective cohort study.

作者信息

Ports Kayleen, Dai Jiahui, Conniff Kyle, Corrada Maria M, Manson Spero M, O'Connell Joan, Jiang Luohua

机构信息

Department of Epidemiology & Biostatistics, Joe C. Wen School of Population & Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, 856 Health Sciences Quad, Irvine, CA 92697-7550, USA.

Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, Bren Hall 2019, Irvine, CA 92697-1250, USA.

出版信息

Lancet Reg Health Am. 2025 Feb 13;43:101013. doi: 10.1016/j.lana.2025.101013. eCollection 2025 Mar.

Abstract

BACKGROUND

Dementia is an increasing concern among American Indian and Alaska Native (AI/AN) communities, yet machine learning models utilizing electronic health record (EHR) data have not been developed or validated for this population. This study aimed to develop a two-year dementia risk prediction model for AI/AN individuals actively using Indian Health Service (IHS) and Tribal health services.

METHODS

Seven years of data were obtained from the IHS National Data Warehouse and related EHR databases and divided into a five-year baseline period (FY2007-2011) and a two-year dementia prediction period (FY2012-2013). Four algorithms were assessed: logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO), random forest, and eXtreme Gradient Boosting (XGBoost). Dementia Risk Score (DRS)-based and extended models were developed for each algorithm, with performance evaluated by the area under the receiver operating characteristic curve (AUC).

FINDINGS

The study cohort included 17,398 AI/AN adults aged ≥ 65 years who were dementia-free at baseline, of whom 59.8% were female. Over the two-year follow-up, 611 individuals (3.5%) were diagnosed with incident dementia. Extended models for logistic regression, LASSO, and XGBoost performed comparably: AUCs (95% CI) of 0.83 (0.79, 0.86), 0.83 (0.79, 0.86), and 0.82 (0.79, 0.86). These top-performing models shared 12 of the 15 highest-ranked predictors, with novel predictors including service utilization.

INTERPRETATION

Machine learning algorithms utilizing EHR data can effectively predict two-year dementia risk among AI/AN older adults. These models could aid IHS and Tribal health clinicians in identifying high-risk individuals, facilitating timely interventions and improved care coordination.

FUNDING

NIH.

摘要

背景

痴呆症在美国印第安人和阿拉斯加原住民(AI/AN)社区中日益受到关注,但利用电子健康记录(EHR)数据的机器学习模型尚未针对该人群进行开发或验证。本研究旨在为积极使用印第安卫生服务局(IHS)和部落卫生服务的AI/AN个体开发一个为期两年的痴呆症风险预测模型。

方法

从IHS国家数据仓库和相关EHR数据库中获取了七年的数据,并将其分为一个五年基线期(2007财年至2011财年)和一个两年痴呆症预测期(2012财年至2013财年)。评估了四种算法:逻辑回归、最小绝对收缩和选择算子(LASSO)、随机森林和极端梯度提升(XGBoost)。为每种算法开发了基于痴呆症风险评分(DRS)的模型和扩展模型,并通过受试者工作特征曲线下面积(AUC)评估性能。

结果

研究队列包括17398名年龄≥65岁的AI/AN成年人,他们在基线时无痴呆症,其中59.8%为女性。在两年的随访中,611人(3.5%)被诊断患有新发痴呆症。逻辑回归、LASSO和XGBoost的扩展模型表现相当:AUC(95%CI)分别为0.83(0.79,0.86)、0.83(0.79,0.86)和0.82(0.79,0.86)。这些表现最佳的模型在15个排名最高的预测因子中共有12个相同,其中新的预测因子包括服务利用情况。

解读

利用EHR数据的机器学习算法可以有效预测AI/AN老年人两年内的痴呆症风险。这些模型可以帮助IHS和部落卫生临床医生识别高危个体,促进及时干预和改善护理协调。

资金来源

美国国立卫生研究院。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e4/11875197/d48b0b6c12cc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验