Suppr超能文献

2020年至2024年塞尔维亚野猪非洲猪瘟的时空分析

Spatiotemporal analysis of African swine fever in wild boar in Serbia from 2020 to 2024.

作者信息

Glišić Dimitrije, Šolaja Sofija, Veljović Ljubisa, Maksimović-Zorić Jelena, Milićević Vesna

机构信息

Department of Virology, Institute of Veterinary Medicine of Serbia, Belgrade.

出版信息

Onderstepoort J Vet Res. 2025 Feb 28;92(1):e1-e7. doi: 10.4102/ojvr.v92i1.2209.

Abstract

African swine fever (ASF) is a highly fatal viral haemorrhagic disease affecting pigs. This study uses official surveillance data to investigate the persistence and spread of ASF in wild boar populations in Serbia from 2020 to 2024. A total of 480 ASF cases were analysed, with spatiotemporal clustering conducted via SaTScan™ and proximity analyses performed in the Quantum Geographic Information System. The yearly prevalence of ASF in wild boar rose steadily from 0.66% in 2020 to 1.47% in 2023. Seasonal trends showed a significant increase in cases during winter (68%) and spring (24%). Five distinct clusters were identified, predominantly near the borders with North Macedonia and Bulgaria, suggesting potential cross-border transmission. Proximity to major roads was significantly associated with ASF case distribution (p  0.01), while proximity to water bodies and elevation showed no consistent pattern. The findings highlight critical gaps in current passive surveillance systems, which likely underestimate ASF prevalence. The study underscores the need for enhanced surveillance in remote and wooded areas and proposes strategies to improve ASF monitoring and control in wild boar populations.Contribution: This study highlights the feasibility of cost-effective, non-invasive surveillance methods for ASF detection, offering critical insights for low-income countries where resources for intensive disease monitoring are limited. By demonstrating how environmental and anthropogenic factors drive ASF dynamics, this research provides actionable strategies for improving regional and global ASF control efforts.

摘要

非洲猪瘟(ASF)是一种影响猪的高致死性病毒性出血性疾病。本研究利用官方监测数据,调查了2020年至2024年塞尔维亚野猪种群中非洲猪瘟的持续存在情况和传播情况。共分析了480例非洲猪瘟病例,通过SaTScan™进行时空聚类,并在量子地理信息系统中进行邻近分析。野猪中非洲猪瘟的年患病率从2020年的0.66%稳步上升至2023年的1.47%。季节性趋势显示,冬季(68%)和春季(24%)的病例显著增加。确定了五个不同的集群,主要靠近与北马其顿和保加利亚的边境,表明存在潜在的跨境传播。靠近主要道路与非洲猪瘟病例分布显著相关(p < 0.01),而靠近水体和海拔高度则没有一致的模式。研究结果突出了当前被动监测系统中的关键差距,这些差距可能低估了非洲猪瘟的患病率。该研究强调了在偏远和树木繁茂地区加强监测的必要性,并提出了改善野猪种群中非洲猪瘟监测和控制的策略。贡献:本研究突出了采用具有成本效益的非侵入性监测方法检测非洲猪瘟的可行性,为低收入国家提供了关键见解,这些国家用于密集疾病监测的资源有限。通过展示环境和人为因素如何驱动非洲猪瘟动态,本研究为改善区域和全球非洲猪瘟防控工作提供了可操作的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验