Suppr超能文献

对比信号依赖可塑性:尖峰神经网络电路中的自监督学习。

Contrastive signal-dependent plasticity: Self-supervised learning in spiking neural circuits.

机构信息

Department of Computer Science, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA.

出版信息

Sci Adv. 2024 Oct 25;10(43):eadn6076. doi: 10.1126/sciadv.adn6076. Epub 2024 Oct 23.

Abstract

Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and the lack of energy efficiency inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically motivated schemes for adjusting the synapses of spiking networks and propose contrastive signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel. Our experimental simulations demonstrate a consistent advantage over other biologically plausible approaches when training recurrent spiking networks, crucially side-stepping the need for extra structure such as feedback synapses.

摘要

脑启发式机器智能研究旨在开发计算模型,模拟区分生物神经元系统的信息处理和适应性。这导致了尖峰神经网络的发展,一类模型有希望解决现代深度学习神经网络固有的生物不可信和能量效率低下的问题。在这项工作中,我们解决了为调整尖峰网络的突触设计神经生物学动机方案的挑战,并提出了对比信号相关可塑性,这一过程将自我监督学习背后的思想推广到基于事件的神经元层架构中,以促进并行运行的局部适应。我们的实验模拟表明,在训练递归尖峰网络时,与其他具有生物合理性的方法相比具有一致的优势,关键是避免了额外结构(如反馈突触)的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/11639678/c723ed864ad3/sciadv.adn6076-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验