de Damborenea Juan, Conde Ana, Rodriguez-Donoso Gloria, Agulló-Rueda Fernando, Arenas Maria Angeles
Surface Engineering, Corrosion and Durability Department, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040, Madrid, Spain.
E.T.S Ingeniería Industrial, Universidad de Castilla-La Mancha (ETSII-UCLM), Avda. Camilo José Cela S/N, 13071, Ciudad Real, Spain.
Sci Rep. 2025 Mar 4;15(1):7557. doi: 10.1038/s41598-025-92332-x.
Concentrated Solar Power (CSP) is a powerful tool for simulating the extreme high-temperature conditions that metallic materials encounter. Using a vertical parabolic solar furnace, it was possible to perform heating and cooling cycles between 250 and 950 °C in approximately 250 s per cycle. This capability is particularly relevant for the development of solar receivers used in solar thermal plants. Additive Manufacturing (AM) offers the potential to create new compositions and geometries that can enhance the efficiency of these solar receivers. In this study, Ni-base superalloys-identified as suitable materials for high-temperature solar receivers-were produced using AM and tested in two conditions: as-built and after thermal treatment. These were compared with a forged reference alloy. The results revealed the formation of a protective oxide layer on the surface in all cases. However, the oxide layer on the samples fabricated by additive manufacturing appeared to be more compact and adherent compared to that formed on the reference alloy.
聚光太阳能发电(CSP)是模拟金属材料所遇到的极端高温条件的有力工具。使用立式抛物面太阳能炉,每个循环大约在250秒内可在250至950°C之间进行加热和冷却循环。这种能力对于太阳能热电厂中使用的太阳能接收器的开发尤为重要。增材制造(AM)提供了创造新成分和几何形状的潜力,可提高这些太阳能接收器的效率。在本研究中,使用增材制造生产了被确定为适用于高温太阳能接收器的镍基高温合金,并在两种条件下进行了测试:制造态和热处理后。将这些与锻造参考合金进行了比较。结果表明,在所有情况下表面均形成了保护性氧化层。然而,与参考合金上形成的氧化层相比,增材制造制备的样品上的氧化层似乎更致密且附着力更强。