Chattopadhyay Tamoghna, Joshy Neha Ann, Ozarkar Saket S, Buwa Ketaki, Feng Yixue, Laltoo Emily, Thomopoulos Sophia I, Villalon Julio E, Joshi Himanshu, Venkatasubramanian Ganesan, John John P, Thompson Paul M
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-7. doi: 10.1109/EMBC53108.2024.10781599.
Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an input to these models. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), which assesses people of North American, largely European ancestry, so we examine how models trained on ADNI, generalize to a new population dataset from India (the NIMHANS cohort). We first benchmark our models by predicting "brain age" - the task of predicting a person's chronological age from their MRI scan and proceed to AD classification. We also evaluate the benefit of using a 3D CycleGAN approach to harmonize the imaging datasets before training the CNN models. Our experiments show that classification performance improves after harmonization in most cases, as well as better performance for dMRI as input.
基于卷积神经网络(CNN)的深度学习模型已被用于通过T1加权脑磁共振成像(MRI)扫描对阿尔茨海默病进行分类或推断痴呆严重程度。在此,我们研究了添加扩散加权MRI(dMRI)作为这些模型输入的价值。该领域的许多研究都集中在特定数据集上,如阿尔茨海默病神经影像学计划(ADNI),该计划主要评估北美、大部分为欧洲血统的人群,因此我们研究了在ADNI上训练的模型如何推广到来自印度的新人群数据集(NIMHANS队列)。我们首先通过预测“脑龄”来对模型进行基准测试——即从MRI扫描预测一个人的实际年龄的任务,然后进行AD分类。我们还评估了在训练CNN模型之前使用3D循环生成对抗网络(CycleGAN)方法来协调成像数据集的好处。我们的实验表明,在大多数情况下,协调后分类性能会提高,以dMRI作为输入时性能也会更好。