文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用单模态 MRI 和深度神经网络对阿尔茨海默病和轻度认知障碍进行自动分类。

Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks.

机构信息

Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.

Effeventi s.r.l., Milan, Italy.

出版信息

Neuroimage Clin. 2019;21:101645. doi: 10.1016/j.nicl.2018.101645. Epub 2018 Dec 18.


DOI:10.1016/j.nicl.2018.101645
PMID:30584016
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6413333/
Abstract

We built and validated a deep learning algorithm predicting the individual diagnosis of Alzheimer's disease (AD) and mild cognitive impairment who will convert to AD (c-MCI) based on a single cross-sectional brain structural MRI scan. Convolutional neural networks (CNNs) were applied on 3D T1-weighted images from ADNI and subjects recruited at our Institute (407 healthy controls [HC], 418 AD, 280 c-MCI, 533 stable MCI [s-MCI]). CNN performance was tested in distinguishing AD, c-MCI and s-MCI. High levels of accuracy were achieved in all the classifications, with the highest rates achieved in the AD vs HC classification tests using both the ADNI dataset only (99%) and the combined ADNI + non-ADNI dataset (98%). CNNs discriminated c-MCI from s-MCI patients with an accuracy up to 75% and no difference between ADNI and non-ADNI images. CNNs provide a powerful tool for the automatic individual patient diagnosis along the AD continuum. Our method performed well without any prior feature engineering and regardless the variability of imaging protocols and scanners, demonstrating that it is exploitable by not-trained operators and likely to be generalizable to unseen patient data. CNNs may accelerate the adoption of structural MRI in routine practice to help assessment and management of patients.

摘要

我们构建并验证了一种深度学习算法,该算法可基于单张大脑结构磁共振成像 (MRI) 扫描预测阿尔茨海默病 (AD) 患者和可能转化为 AD 的轻度认知障碍患者 (c-MCI) 的个体诊断。卷积神经网络 (CNN) 应用于 ADNI 和我们研究所招募的受试者的 3D T1 加权图像(407 名健康对照 [HC]、418 名 AD、280 名 c-MCI、533 名稳定 MCI [s-MCI])。在区分 AD、c-MCI 和 s-MCI 方面,对 CNN 的性能进行了测试。在所有分类中都达到了很高的准确性,在仅使用 ADNI 数据集(99%)和结合 ADNI+非 ADNI 数据集(98%)进行 AD 与 HC 分类测试中,达到了最高的准确率。CNN 能够以高达 75%的准确率区分 c-MCI 和 s-MCI 患者,并且 ADNI 和非 ADNI 图像之间没有差异。CNN 为 AD 连续体中的自动个体患者诊断提供了强大的工具。我们的方法无需任何前期特征工程,并且不受成像协议和扫描仪的变化影响,表明它可由未经训练的操作人员使用,并且可能适用于未见过的患者数据。CNN 可能会加速结构 MRI 在常规实践中的应用,以帮助评估和管理患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0923/6413333/15ced53c8a59/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0923/6413333/264ee236482b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0923/6413333/b617287ff8a8/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0923/6413333/15ced53c8a59/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0923/6413333/264ee236482b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0923/6413333/b617287ff8a8/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0923/6413333/15ced53c8a59/gr3.jpg

相似文献

[1]
Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks.

Neuroimage Clin. 2018-12-18

[2]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[3]
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.

Int J Neural Syst. 2020-6

[4]
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.

Neuroimage Clin. 2019-7-4

[5]
Automated classification of Alzheimer's disease, mild cognitive impairment, and cognitively normal patients using 3D convolutional neural network and radiomic features from T1-weighted brain MRI: A comparative study on detection accuracy.

Clin Imaging. 2024-11

[6]
Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database.

J Neurosci Methods. 2017-12-18

[7]
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.

Neuroimage. 2020-3

[8]
Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares.

J Neurosci Methods. 2017-12-11

[9]
Latent diffusion model-based MRI superresolution enhances mild cognitive impairment prognostication and Alzheimer's disease classification.

Neuroimage. 2024-8-1

[10]
Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis.

Brain Imaging Behav. 2021-10

引用本文的文献

[1]
Artificial intelligence technologies for enhancing neurofunctionalities: a comprehensive review with applications in Alzheimer's disease research.

Front Aging Neurosci. 2025-8-15

[2]
The Role of Quantitative EEG in the Diagnosis of Alzheimer's Disease.

Diagnostics (Basel). 2025-8-5

[3]
Multi-Center 3D CNN for Parkinson's disease diagnosis and prognosis using clinical and T1-weighted MRI data.

Neuroimage Clin. 2025-8-5

[4]
Cross-Dataset Evaluation of Dementia Longitudinal Progression Prediction Models.

Hum Brain Mapp. 2025-8-1

[5]
Development and validation of a model to predict the progression of Alzheimer's disease.

Age Ageing. 2025-7-1

[6]
Emerging trends in Alzheimer's disease diagnosis and prediction using artificial intelligence: A bibliometric analysis of the top cited 100 articles.

Digit Health. 2025-7-17

[7]
Predicting conversion from mild cognitive impairment to Alzheimer's disease using a Vision Transformer and hippocampal MRI slices.

medRxiv. 2025-5-21

[8]
Classifying and diagnosing Alzheimer's disease with deep learning using 6735 brain MRI images.

Sci Rep. 2025-7-2

[9]
Research progress in predicting the conversion from mild cognitive impairment to Alzheimer's disease via multimodal MRI and artificial intelligence.

Front Neurol. 2025-6-2

[10]
An ensemble-based 3D residual network for the classification of Alzheimer's disease.

PLoS One. 2025-6-11

本文引用的文献

[1]
Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network.

Front Biosci (Landmark Ed). 2018-1-1

[2]
Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers.

Lancet Neurol. 2017-7-11

[3]
A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages.

Neuroimage. 2017-7-15

[4]
Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials.

Alzheimers Dement. 2017-4

[5]
Deep ensemble learning of sparse regression models for brain disease diagnosis.

Med Image Anal. 2017-1-24

[6]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[7]
Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications.

Neurosci Biobehav Rev. 2017-1-10

[8]
The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases.

Front Neurol. 2015-10-15

[9]
Deep learning.

Nature. 2015-5-28

[10]
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

Science. 2015-1-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索