Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
Effeventi s.r.l., Milan, Italy.
Neuroimage Clin. 2019;21:101645. doi: 10.1016/j.nicl.2018.101645. Epub 2018 Dec 18.
We built and validated a deep learning algorithm predicting the individual diagnosis of Alzheimer's disease (AD) and mild cognitive impairment who will convert to AD (c-MCI) based on a single cross-sectional brain structural MRI scan. Convolutional neural networks (CNNs) were applied on 3D T1-weighted images from ADNI and subjects recruited at our Institute (407 healthy controls [HC], 418 AD, 280 c-MCI, 533 stable MCI [s-MCI]). CNN performance was tested in distinguishing AD, c-MCI and s-MCI. High levels of accuracy were achieved in all the classifications, with the highest rates achieved in the AD vs HC classification tests using both the ADNI dataset only (99%) and the combined ADNI + non-ADNI dataset (98%). CNNs discriminated c-MCI from s-MCI patients with an accuracy up to 75% and no difference between ADNI and non-ADNI images. CNNs provide a powerful tool for the automatic individual patient diagnosis along the AD continuum. Our method performed well without any prior feature engineering and regardless the variability of imaging protocols and scanners, demonstrating that it is exploitable by not-trained operators and likely to be generalizable to unseen patient data. CNNs may accelerate the adoption of structural MRI in routine practice to help assessment and management of patients.
我们构建并验证了一种深度学习算法,该算法可基于单张大脑结构磁共振成像 (MRI) 扫描预测阿尔茨海默病 (AD) 患者和可能转化为 AD 的轻度认知障碍患者 (c-MCI) 的个体诊断。卷积神经网络 (CNN) 应用于 ADNI 和我们研究所招募的受试者的 3D T1 加权图像(407 名健康对照 [HC]、418 名 AD、280 名 c-MCI、533 名稳定 MCI [s-MCI])。在区分 AD、c-MCI 和 s-MCI 方面,对 CNN 的性能进行了测试。在所有分类中都达到了很高的准确性,在仅使用 ADNI 数据集(99%)和结合 ADNI+非 ADNI 数据集(98%)进行 AD 与 HC 分类测试中,达到了最高的准确率。CNN 能够以高达 75%的准确率区分 c-MCI 和 s-MCI 患者,并且 ADNI 和非 ADNI 图像之间没有差异。CNN 为 AD 连续体中的自动个体患者诊断提供了强大的工具。我们的方法无需任何前期特征工程,并且不受成像协议和扫描仪的变化影响,表明它可由未经训练的操作人员使用,并且可能适用于未见过的患者数据。CNN 可能会加速结构 MRI 在常规实践中的应用,以帮助评估和管理患者。
Int J Neural Syst. 2020-6
Neuroimage Clin. 2019-7-4
Diagnostics (Basel). 2025-8-5
Hum Brain Mapp. 2025-8-1
Front Biosci (Landmark Ed). 2018-1-1
Lancet Neurol. 2017-7-11
Med Image Anal. 2017-1-24
Nature. 2015-5-28