Suppr超能文献

基于束分析的数据协调用于多中心扩散磁共振成像纤维束示踪术

Bundle Analytics based Data Harmonization for Multi-Site Diffusion MRI Tractometry.

作者信息

Chandio Bramsh Qamar, Villalon-Reina Julio E, Nir Talia M, Thomopoulos Sophia I, Feng Yixue, Benavidez Sebastian, Jahanshad Neda, Harezlak Jaroslaw, Garyfallidis Eleftherios, Thompson Paul M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-7. doi: 10.1109/EMBC53108.2024.10782419.

Abstract

The neural pathways of the living human brain can be tracked using diffusion MRI-based tractometry. Along-tract statistical analysis of microstructural metrics can reveal the effects of neurological and psychiatric diseases with 3D spatial precision. To maximize statistical power to detect disease effects and factors that influence them, data from multiple sites and scanners must often be combined, yet scanning protocols and hardware may vary widely. For simple scalar metrics, data harmonization methods - such as ComBat and its variants -allow modeling of disease effects on derived brain metrics, while adjusting for effects of scanning site or protocol. Here, we extend this method to pointwise segment analyses of 3D fiber bundles by integrating ComBat into the BUndle ANalytics (BUAN) tractometry pipeline. In a study of the effects of mild cognitive impairment (MCI) and Alzheimer's disease (AD) on 38 white matter tracts, we merge data from 7 different scanning protocols used in the Alzheimer's Disease Neuroimaging Initiative, which vary in voxel size and angular resolution. By incorporating ComBat harmonization, we model site- and scanner-specific effects, ensuring the reliability and comparability of results by mitigating confounding variables. We also evaluate choices that arise in extending batch adjustment to tracts, such as the regions used to estimate the correction. We also compare the approach to the simpler approach of modeling the site as a random effect. To the best of our knowledge, this is one of the first applications to adapt harmonization to 3D tractometry.

摘要

利用基于扩散磁共振成像的纤维束成像技术,可以追踪活体人类大脑的神经通路。对微观结构指标进行沿纤维束的统计分析,能够以三维空间精度揭示神经和精神疾病的影响。为了最大限度地提高检测疾病影响及其影响因素的统计功效,通常必须合并来自多个地点和扫描仪的数据,然而扫描协议和硬件可能差异很大。对于简单的标量指标,数据协调方法(如ComBat及其变体)可以在对扫描部位或协议的影响进行调整的同时,对疾病对派生脑指标的影响进行建模。在此,我们通过将ComBat集成到纤维束分析(BUAN)纤维束成像流程中,将该方法扩展到三维纤维束的逐点节段分析。在一项关于轻度认知障碍(MCI)和阿尔茨海默病(AD)对38条白质纤维束影响的研究中,我们合并了阿尔茨海默病神经影像倡议中使用的7种不同扫描协议的数据,这些协议在体素大小和角分辨率方面存在差异。通过纳入ComBat协调,我们对特定于部位和扫描仪的影响进行建模,通过减轻混杂变量来确保结果的可靠性和可比性。我们还评估了将批次调整扩展到纤维束时出现的选择,例如用于估计校正的区域。我们还将该方法与将部位建模为随机效应的更简单方法进行了比较。据我们所知,这是将协调应用于三维纤维束成像的首批应用之一。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验