Zhang Zhixue, Yu Peiping, Liu Zhaojun, Liu Kai, Mu Zerui, Wen Zhibin, She Junlin, Bai Yuke, Zhang Qing, Cheng Tao, Gao Chuanbo
State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Center for Materials Chemistry, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
J Am Chem Soc. 2025 Mar 19;147(11):9640-9652. doi: 10.1021/jacs.4c17756. Epub 2025 Mar 5.
High-entropy alloy (HEA) nanoparticles offer unique catalytic properties due to their complex surface coordination and widely tunable electronic structures. Conventional synthesis methods typically involve extreme thermal shock (∼1700 °C) to achieve metal coreduction and mixing. While wet-chemical approaches hold potential for controlling nanoparticle properties, they are hindered by disparities in metal reduction kinetics and a diminished influence of configurational entropy on metal mixing at low temperatures, leading to phase segregation and limited compositional tunability. In this work, we introduce a novel wet-chemical hydrothermal method that enables the synthesis of HEA nanoparticles with enhanced compositional homogeneity and precise property control at low temperatures (∼170 °C). This method utilizes in situ generation of active hydrogen (H) via organic dehydrogenation on nuclei/seed surfaces, creating localized off-equilibrium environments within the near-equilibrium wet-chemical system. These conditions mitigate the thermodynamic and kinetic limitations, enabling synchronized metal reduction, precise compositional tunability over a broad range, and improved alloy uniformity. As a proof of concept, we demonstrate the enhanced electrocatalytic methanol oxidation performance of PtCuNiCoFe HEA nanoparticles through surface composition design. This approach offers a robust platform for synthesizing HEA nanoparticles with tailored properties, expanding their catalytic applications.
高熵合金(HEA)纳米颗粒由于其复杂的表面配位和广泛可调的电子结构而具有独特的催化性能。传统的合成方法通常涉及极端的热冲击(约1700°C)以实现金属的共还原和混合。虽然湿化学方法在控制纳米颗粒性能方面具有潜力,但它们受到金属还原动力学差异以及低温下构型熵对金属混合影响减弱的阻碍,导致相分离和有限的成分可调性。在这项工作中,我们引入了一种新型的湿化学水热方法,该方法能够在低温(约170°C)下合成具有更高成分均匀性和精确性能控制的HEA纳米颗粒。该方法利用通过核/种子表面上的有机脱氢原位产生活性氢(H),在近平衡湿化学系统中创建局部非平衡环境。这些条件减轻了热力学和动力学限制,实现了同步金属还原、在宽范围内精确的成分可调性以及改善的合金均匀性。作为概念验证,我们通过表面成分设计展示了PtCuNiCoFe HEA纳米颗粒增强的电催化甲醇氧化性能。这种方法为合成具有定制性能的HEA纳米颗粒提供了一个强大的平台,扩展了它们的催化应用。