Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
ACS Nano. 2023 Jul 11;17(13):12188-12199. doi: 10.1021/acsnano.3c00443. Epub 2023 May 25.
The unorthodox surface chemistry of high-entropy alloy nanoparticles (HEA-NPs), with numerous interelemental synergies, helps catalyze a variety of essential chemical processes, such as the conversion of CO to CO, as a sustainable path to environmental remediation. However, the risk of agglomeration and phase separation in HEA-NPs during high-temperature operations are lasting issues that impede their practical viability. Herein, we present HEA-NP catalysts that are tightly sunk in an oxide overlayer for promoting the catalytic conversion of CO with exceptional stability and performance. We demonstrated the controlled formation of conformal oxide overlayers on carbon nanofiber surfaces via a simple sol-gel method, which facilitated a large uptake of metal precursor ions and helped to decrease the reaction temperature required for nanoparticle formation. During the rapid thermal shock synthesis process, the oxide overlayer would also impede nanoparticle growth, resulting in uniformly distributed small HEA-NPs (2.37 ± 0.78 nm). Moreover, these HEA-NPs were firmly socketed in the reducible oxide overlayer, enabling an ultrastable catalytic performance involving >50% CO conversion with >97% selectivity to CO for >300 h without extensive agglomeration. Altogether, we establish the rational design principles for the thermal shock synthesis of high-entropy alloy nanoparticles and offer a helpful mechanistic perspective on how the oxide overlayer impacts the nanoparticle synthesis behavior, providing a general platform for the designed synthesis of ultrastable and high-performance catalysts that could be utilized for various industrially and environmentally relevant chemical processes.
高熵合金纳米粒子(HEA-NPs)的非常规表面化学性质,具有多种元素间协同作用,有助于催化各种重要的化学过程,如 CO 到 CO 的转化,是环境修复的可持续途径。然而,HEA-NPs 在高温操作过程中团聚和相分离的风险是持久存在的问题,阻碍了它们的实际可行性。在本文中,我们提出了一种紧密嵌入氧化物覆盖层中的 HEA-NP 催化剂,以促进 CO 的催化转化,具有出色的稳定性和性能。我们通过简单的溶胶-凝胶法证明了在碳纳米纤维表面上可控形成共形氧化物覆盖层,这有利于大量金属前体离子的吸收,并有助于降低形成纳米颗粒所需的反应温度。在快速热冲击合成过程中,氧化物覆盖层也会阻碍纳米颗粒的生长,从而形成均匀分布的小 HEA-NPs(2.37 ± 0.78nm)。此外,这些 HEA-NPs 牢固地嵌入可还原氧化物覆盖层中,实现了超稳定的催化性能,在 >300 h 的时间内,CO 转化率超过 50%,CO 选择性超过 97%,且没有明显的团聚。总之,我们建立了高熵合金纳米粒子热冲击合成的合理设计原则,并提供了关于氧化物覆盖层如何影响纳米颗粒合成行为的有价值的机制见解,为设计超稳定和高性能催化剂提供了一个通用平台,可用于各种工业和环境相关的化学过程。