Suppr超能文献

MRI阴性颞叶癫痫静息态功能脑网络的特定模型

A specific model of resting-state functional brain network in MRI-negative temporal lobe epilepsy.

作者信息

Yang Xue, Ge Manling, Chen Shenghua, Wang Kaiwei, Cheng Hao, Zhang Zhiqiang

机构信息

School of Life Science and Health Engineering, Hebei University of Technology, Tianjin, China.

Hebei Province Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China.

出版信息

Heliyon. 2025 Feb 13;11(4):e42695. doi: 10.1016/j.heliyon.2025.e42695. eCollection 2025 Feb 28.

Abstract

PURPOSE

Without any visible indicator on structure magnetic resonance imaging (MRI), the diagnosis of MRI-negative temporal lobe epilepsy (NTLE) gets harder. By considering healthy control (HC), a specific functional connectivity (FC) model was constructed in a network topology to improve FC computation to a high-level.

METHODS

MRI data of 20 NTLE patients and 60 HC were pre-processed. Relative to HC, a network-level specific FC model of each network index was built to score the network functions for each NTLE patient. The specific brain areas (regarded as ROIs) were extracted for NTLE by sensitivity analysis of scores. By considering scores of specific ROIs as feature vectors to input into a SVM respectively, a specific NTLE classifier was constructed. Both 10-fold cross validation and hold-out method were utilized to validate the classification and to evaluate the effectiveness of our specific FC models. Simultaneously, the specific FC model was compared to the conventional FC model of Pearson correlation.

RESULTS

By the constructed model for specific FC at a network-level, 11 specific ROIs, such as, frontal lobe, temporal lobe, parietal lobe, hippocampus, and occipital lobe, were extracted for NTLE. Accuracy of our specific NTLE classifier could reach up nearly 93 %, over 6 % greater than conventional FC model of Pearson correlation.

CONCLUSIONS

The network-level specific FC model might provide a new methodology for machine-aiding detection of functional abnormal lesions of NTLE by resting-state functional MRI.

摘要

目的

在结构磁共振成像(MRI)上没有任何可见指标的情况下,MRI阴性颞叶癫痫(NTLE)的诊断变得更加困难。通过纳入健康对照(HC),在网络拓扑中构建了一种特定的功能连接(FC)模型,以将FC计算提升到更高水平。

方法

对20例NTLE患者和60例HC的MRI数据进行预处理。相对于HC,构建每个网络指标的网络级特定FC模型,以对每位NTLE患者的网络功能进行评分。通过评分的敏感性分析为NTLE提取特定脑区(视为感兴趣区(ROI))。通过将特定ROI的评分作为特征向量分别输入支持向量机(SVM),构建特定的NTLE分类器。采用10折交叉验证和留出法来验证分类并评估我们特定FC模型的有效性。同时,将特定FC模型与传统的Pearson相关性FC模型进行比较。

结果

通过在网络级构建的特定FC模型,为NTLE提取了11个特定的ROI,如额叶、颞叶、顶叶、海马体和枕叶。我们特定的NTLE分类器的准确率可达到近93%,比传统的Pearson相关性FC模型高出6%以上。

结论

网络级特定FC模型可能为静息态功能MRI对NTLE功能异常病变的机器辅助检测提供一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dce8/11876875/fa9ddad49bca/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验