Ezenarro Josune J, Al Ktash Mohammad, Vigues Nuria, Gordi Jordi Mas, Muñoz-Berbel Xavi, Brecht Marc
Departament Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
Process Analysis and Technology PA & T, Reutlingen University, Reutlingen, Germany.
Front Chem. 2025 Feb 18;13:1530955. doi: 10.3389/fchem.2025.1530955. eCollection 2025.
Plate culturing and visual inspection are the gold standard methods for bacterial identification. Despite the growing attention on molecular biology techniques, colony identification using agar plates remains manual, interpretative, and heavily reliant on human experience, making it prone to errors. Advanced imaging techniques, like hyperspectral imaging, offer potential alternatives. However, the use of hyperspectral imaging in the VIS-NIR region has been hindered by sensitivity to various components and culture medium changes, leading to inaccurate results. The application of hyperspectral imaging in the ultraviolet (UV) region has not been explored, despite the presence of specific absorption and emission peaks in bacterial components.
To address this gap, we developed a predictive model for bacterial colony detection and identification using UV hyperspectral imaging. The model utilizes hyperspectral images acquired in the UV wavelength range of 225-400 nm, processed with principal component analysis (PCA) and discriminant analysis (DA). The measurement setup includes a hyperspectral imager, a PC for automated data analysis, and a conveyor belt system to transport agar plates for automated analysis. Four bacterial species were cultured on two different media, Luria Bertani and Tryptic Soy, to train and validate the model.
The PCA-DA-based model demonstrated high accuracy (90%) in differentiating bacterial species based on the first three principal components, highlighting the potential of UV hyperspectral imaging for bacterial identification.
This study shows that UV hyperspectral imaging, coupled with advanced data analysis techniques, offers a robust and automated alternative to traditional methods for bacterial identification. The model's high accuracy emphasizes the untapped potential of UV hyperspectral imaging in microbiological analysis, reducing human error and improving reliability in bacterial species differentiation.
平板培养和目视检查是细菌鉴定的金标准方法。尽管分子生物学技术越来越受到关注,但使用琼脂平板进行菌落鉴定仍然是人工操作、主观解释且严重依赖人类经验,容易出错。高光谱成像等先进成像技术提供了潜在的替代方法。然而,可见光-近红外(VIS-NIR)区域高光谱成像的应用受到对各种成分和培养基变化敏感性的阻碍,导致结果不准确。尽管细菌成分中存在特定的吸收和发射峰,但紫外(UV)区域高光谱成像的应用尚未得到探索。
为了填补这一空白,我们开发了一种使用紫外高光谱成像进行细菌菌落检测和鉴定的预测模型。该模型利用在225-400nm紫外波长范围内采集的高光谱图像,通过主成分分析(PCA)和判别分析(DA)进行处理。测量设置包括一台高光谱成像仪、一台用于自动数据分析的个人计算机以及一个用于输送琼脂平板以进行自动分析的传送带系统。在两种不同的培养基(Luria Bertani培养基和胰蛋白胨大豆培养基)上培养了四种细菌,以训练和验证该模型。
基于PCA-DA的模型在前三个主成分的基础上对细菌种类进行区分时显示出较高的准确率(90%),突出了紫外高光谱成像在细菌鉴定方面的潜力。
本研究表明,紫外高光谱成像与先进的数据分析技术相结合,为传统细菌鉴定方法提供了一种强大且自动化的替代方案。该模型的高准确率强调了紫外高光谱成像在微生物分析中尚未开发的潜力,减少了人为误差并提高了细菌种类区分的可靠性。