Correia J J, Williams R C
Arch Biochem Biophys. 1985 May 15;239(1):120-9. doi: 10.1016/0003-9861(85)90818-5.
We and others [Lee et al. (1973) J. Biol. Chem. 248, 7253-7262; Kravit et al. (1982) J. Cell Biol. 95, 344a; Kravit et al. (1984) J. Cell Biol. 99, 188-198] have observed oligomers of tubulin by native polyacrylamide gel electrophoresis (PAGE), even when they were not evident in sedimentation velocity or gel-exclusion chromatography experiments under comparable conditions. Aggregates of tubulin are also seen on native starch gels. Tubulins purified from calf brain, sea urchin egg (Strongylocentrotus purpuratus), and antarctic fish brain (Pagothenia borchgrevinki) give rise to similar distributions of aggregates. Unlike microtubules, these oligomers are relatively insensitive to temperature (5-25 degrees C), pH (6.1-8.8), the absence of excess GTP and/or Mg+2, stoichiometric concentrations of colchicine, and a variety of electrophoresis buffers. These aggregates, once formed during electrophoresis, associate and dissociate slowly. Depending upon the incubation conditions, they give rise to kinetically controlled distributions that appear in two-dimensional native PAGE as a square array of discrete polymeric species. The fastest migrating species (monomers) are often observed to reequilibrate preferentially into the second band. The second band reequilibrates into the fourth, the third band into the sixth, the fourth into the eighth, etc. (The assignment of molecular weights to these species by Ferguson analysis is tentative due to their slow reequilibration.) Thus, a feature of the reequilibration is that association occurs more rapidly than dissociation and each species is occasionally observed to "dimerize." This behavior is suggestive of irreversible aggregation (possibly crosslinking) or of the formation of slowly dissociating aggregates. Although they may be related to the protofilaments of microtubules, these oligomers appear to be another example of nonmicrotubular, polymorphic aggregates of tubulin.
我们以及其他研究人员[Lee等人(1973年),《生物化学杂志》248卷,7253 - 7262页;Kravit等人(1982年),《细胞生物学杂志》95卷,344a页;Kravit等人(1984年),《细胞生物学杂志》99卷,188 - 198页]通过天然聚丙烯酰胺凝胶电泳(PAGE)观察到了微管蛋白寡聚体,即便在类似条件下的沉降速度或凝胶排阻色谱实验中它们并不明显。在天然淀粉凝胶上也能看到微管蛋白聚集体。从小牛脑、海胆卵(紫球海胆)和南极鱼脑(博氏肩孔南极鱼)中纯化得到的微管蛋白会产生类似的聚集体分布。与微管不同,这些寡聚体对温度(5 - 25摄氏度)、pH值(6.1 - 8.8)、缺乏过量的鸟苷三磷酸(GTP)和/或镁离子(Mg +2)、秋水仙碱的化学计量浓度以及多种电泳缓冲液相对不敏感。这些聚集体一旦在电泳过程中形成,其缔合和解离都很缓慢。根据孵育条件,它们会产生动力学控制的分布,在二维天然PAGE中呈现为离散聚合物种类的方形阵列。通常观察到迁移最快的种类(单体)会优先重新平衡到第二条带中。第二条带会重新平衡到第四条带,第三条带会重新平衡到第六条带,第四条带会重新平衡到第八条带等等。(由于它们重新平衡缓慢,通过弗格森分析为这些种类分配分子量是初步的。)因此,重新平衡的一个特点是缔合比解离发生得更快,并且偶尔会观察到每个种类“二聚化”。这种行为暗示了不可逆聚集(可能是交联)或形成了缓慢解离的聚集体。尽管它们可能与微管的原纤维有关,但这些寡聚体似乎是微管蛋白非微管多态聚集体的另一个例子。