He Zheng, Zhang Jianxiu, Xu Yan, Fine Eve J, Suomivuori Carl-Mikael, Dror Ron O, Feng Liang
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.
Nature. 2025 May;641(8061):250-257. doi: 10.1038/s41586-025-08667-y. Epub 2025 Mar 5.
The mitochondrial pyruvate carrier (MPC) governs the entry of pyruvate-a central metabolite that bridges cytosolic glycolysis with mitochondrial oxidative phosphorylation-into the mitochondrial matrix. It thus serves as a pivotal metabolic gatekeeper and has fundamental roles in cellular metabolism. Moreover, MPC is a key target for drugs aimed at managing diabetes, non-alcoholic steatohepatitis and neurodegenerative diseases. However, despite MPC's critical roles in both physiology and medicine, the molecular mechanisms underlying its transport function and how it is inhibited by drugs have remained largely unclear. Here our structural findings on human MPC define the architecture of this vital transporter, delineate its substrate-binding site and translocation pathway, and reveal its major conformational states. Furthermore, we explain the binding and inhibition mechanisms of MPC inhibitors. Our findings provide the molecular basis for understanding MPC's function and pave the way for the development of more-effective therapeutic reagents that target MPC.
线粒体丙酮酸载体(MPC)控制着丙酮酸(一种连接胞质糖酵解与线粒体氧化磷酸化的核心代谢物)进入线粒体基质。因此,它充当着关键的代谢守门人,在细胞代谢中发挥着重要作用。此外,MPC是旨在治疗糖尿病、非酒精性脂肪性肝炎和神经退行性疾病的药物的关键靶点。然而,尽管MPC在生理学和医学中都起着关键作用,但其转运功能的分子机制以及药物如何抑制它在很大程度上仍不清楚。在这里,我们关于人类MPC的结构发现定义了这种重要转运蛋白的结构,描绘了其底物结合位点和转运途径,并揭示了其主要构象状态。此外,我们解释了MPC抑制剂的结合和抑制机制。我们的发现为理解MPC的功能提供了分子基础,并为开发更有效的靶向MPC的治疗试剂铺平了道路。