Suppr超能文献

肺栓塞诊断中肺通气/灌注断层成像的放射组学

Radiomics of lung ventilation/perfusion tomographic imaging in pulmonary embolism diagnosis.

作者信息

Liu Yu-Shuang, Wang Lei, Song Hao-Yu, Wang Li, Yang Yuan-Hua, Yang Qi, Gong Juan-Ni, Yang Min-Fu

机构信息

Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8Th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.

Department of Nuclear Medicine, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China.

出版信息

Ann Nucl Med. 2025 Jun;39(6):608-617. doi: 10.1007/s12149-025-02037-4. Epub 2025 Mar 5.

Abstract

PURPOSE

The aim of this study was to develop a machine learning model (named V/P-mics) to identify pulmonary embolism based on lung ventilation/perfusion single-photon emission tomography (V/P-SPECT) images.

METHODS

We retrospectively collected the data of 260 patients from one hospital who underwent V/P-SPECT. Patients were randomly assigned to training and testing groups in a 7:3 ratio. We created an internal further validation group using data of an additional 35 patients from the same hospital, and an external further validation group using data of 30 patients from another hospital. We constructed 35 models and selected one for further optimization. The generalizability of V/P-mics was proven by comparing the area under the curve (AUC) of the testing group, internal and external further validation groups. The diagnostic accuracy and efficiency of V/P-mics was compared with that of nuclear physicians.

RESULTS

V/P-mics showed excellent generalizability, with no statistical difference in AUC among the testing, internal further validation, and external further validation groups (0.938 vs. 0.923 vs. 0.990, all P values > 0.05). The AUC of V/P-mics was close to that of the senior physician (0.923 vs. 0.975, P = 0.332), but significantly higher than the junior physician (0.923 vs. 0.725, P = 0.050). Furthermore, V/P-mics significantly shortened the diagnosis time as compared to the junior physician (100 ± 16 s vs. 240 ± 37 s, P = 0.001).

CONCLUSION

The V/P-mics had good discrimination and generalizability and significantly shortened the diagnosis time for patients with pulmonary embolism. Of note, the model showed excellent interpretability.

摘要

目的

本研究旨在开发一种基于肺通气/灌注单光子发射计算机断层扫描(V/P-SPECT)图像识别肺栓塞的机器学习模型(命名为V/P-mics)。

方法

我们回顾性收集了一家医院260例行V/P-SPECT检查患者的数据。患者按7:3的比例随机分为训练组和测试组。我们使用同一家医院另外35例患者的数据创建了一个内部进一步验证组,并使用另一家医院30例患者的数据创建了一个外部进一步验证组。我们构建了35个模型并选择一个进行进一步优化。通过比较测试组、内部和外部进一步验证组的曲线下面积(AUC)来证明V/P-mics的可推广性。将V/P-mics的诊断准确性和效率与核医学医师的进行比较。

结果

V/P-mics显示出优异的可推广性,测试组、内部进一步验证组和外部进一步验证组的AUC无统计学差异(0.938对0.923对0.990,所有P值>0.05)。V/P-mics的AUC与高级医师的相近(0.923对0.975,P = 0.332),但显著高于初级医师(0.9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验