Wang Nannan, Feng Haisong, Yang Jing, Zheng Jie, Zhang Yong-Wei, Hadjichristidis Nikos, Li Zibiao
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore.
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
Angew Chem Int Ed Engl. 2025 May;64(19):e202500222. doi: 10.1002/anie.202500222. Epub 2025 Mar 22.
Metal catalysts for the CO reduction reaction (CORR) face challenges such as high cost, limited durability, and environmental impact. Although various structurally diverse and functional metal-free catalysts have been developed, they often suffer from slow kinetics, low selectivity, and nonrecyclability, significantly limiting their practical applications. In this study, we introduce a recyclable nonmetallic polymer material (vitrimer) as a catalyst for a new platform in contact-electrocatalysis. This approach harnesses the contact charges generated between water droplets and vitrimer to drive CORR, achieving methanol selectivity exceeding 90%. The imine groups within the vitrimer play a dual role, facilitating CO adsorption and enriching friction-generated electrons, thereby mediating efficient electron transfer between the imine groups and CO to promote CORR. After 84 h of CORR, the system achieved a methanol production rate of 13 nmol·h, demonstrating the excellent stability of the method. Moreover, the vitrimer retains its high-performance electrocatalytic activity even after recycling. Mechanistic studies reveal that, compared to traditional metal catalysts, the N─O bond in the imine, which adsorbs the key intermediate *OCH, breaks more readily to produce methanol, resulting in enhanced product selectivity and yield. This efficient and environmentally friendly contact-electroreduction strategy for CO offers a promising pathway toward a circular carbon economy by leveraging natural water droplet-based contact-electrochemistry.
用于一氧化碳还原反应(CORR)的金属催化剂面临着成本高、耐久性有限和环境影响等挑战。尽管已经开发出了各种结构多样且功能各异的无金属催化剂,但它们往往存在动力学缓慢、选择性低和不可回收等问题,这严重限制了它们的实际应用。在本研究中,我们引入了一种可回收的非金属聚合物材料(玻璃转化体)作为接触电催化新平台的催化剂。这种方法利用水滴与玻璃转化体之间产生的接触电荷来驱动CORR,实现了超过90%的甲醇选择性。玻璃转化体内的亚胺基团发挥了双重作用,促进了一氧化碳的吸附并富集摩擦产生的电子,从而介导了亚胺基团与一氧化碳之间的有效电子转移,以促进CORR。经过84小时的CORR后,该系统实现了13 nmol·h的甲醇生产率,证明了该方法具有出色的稳定性。此外,即使经过回收,玻璃转化体仍保持其高性能的电催化活性。机理研究表明,与传统金属催化剂相比,吸附关键中间体*OCH的亚胺中的N─O键更容易断裂以生成甲醇,从而提高了产物的选择性和产率。这种高效且环保的一氧化碳接触电还原策略通过利用基于天然水滴的接触电化学,为循环碳经济提供了一条有前景的途径。