Suppr超能文献

甲硫氨酸介导的植物生长与耐盐性之间的权衡

Methionine-mediated trade-off between plant growth and salt tolerance.

作者信息

Shi Benhui, Li Ke, Xu Rui, Zhang Feng, Yu Zipeng, Ding Zhaojun, Tian Huiyu

机构信息

School of Life Sciences, Shandong University, Qingdao 266237, PR China.

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, PR China.

出版信息

Plant Physiol. 2025 Mar 1;197(3). doi: 10.1093/plphys/kiaf074.

Abstract

Salt stress is an important environmental factor that limits plant growth and development. A better understanding of the molecular mechanisms underlying plant salt tolerance will help improve plant performance and crop production under saline conditions. Here, we found that the amino acid methionine significantly improves plant salt tolerance. The salinity-induced activation of key genes governing methionine biosynthesis, namely Hcy-S-methyltransferases (HMTs) and methionine synthases (MSs), is controlled by the concerted interplay of abscisic acid (ABA) and reactive oxygen species signaling. This orchestrated gene activation subsequently leads to methionine accumulation, activating ABA signaling and improving plant salt tolerance. Beyond its role in modulating ABA signaling, methionine affects root growth dynamics by suppressing auxin and cytokinin signaling and impeding cell cycle progression. These multiple effects on growth-related signaling pathways lead to an effective redistribution of energy resources to improve the plant's ability to combat salt-induced stress. Our findings underscore methionine's pivotal involvement in enhancing plant adaptation to salinity stress by establishing a delicate balance between growth and salt tolerance. This mechanistic understanding sheds light on a compelling way to increase crop yields in saline soils and provides a strategic framework for sustainable agricultural practices in challenging environments.

摘要

盐胁迫是限制植物生长发育的重要环境因素。更好地了解植物耐盐性的分子机制将有助于提高盐渍条件下植物的性能和作物产量。在此,我们发现氨基酸甲硫氨酸显著提高植物耐盐性。盐度诱导的甲硫氨酸生物合成关键基因,即同型半胱氨酸S-甲基转移酶(HMTs)和甲硫氨酸合成酶(MSs)的激活,受脱落酸(ABA)和活性氧信号的协同相互作用控制。这种精心编排的基因激活随后导致甲硫氨酸积累,激活ABA信号并提高植物耐盐性。除了在调节ABA信号方面的作用外,甲硫氨酸还通过抑制生长素和细胞分裂素信号以及阻碍细胞周期进程来影响根系生长动态。对与生长相关的信号通路的这些多重影响导致能量资源的有效重新分配,以提高植物对抗盐诱导胁迫的能力。我们的研究结果强调了甲硫氨酸通过在生长和耐盐性之间建立微妙平衡,在增强植物对盐胁迫的适应性方面的关键作用。这种机制性理解揭示了一种在盐渍土壤中提高作物产量的引人注目的方法,并为在具有挑战性的环境中进行可持续农业实践提供了战略框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验