Suppr超能文献

使用Stentrode从两名肌萎缩侧索硬化症患者的人类运动皮层记录的γ和高γ频段的运动活动。

Motor activity in gamma and high gamma bands recorded with a Stentrode from the human motor cortex in two people with ALS.

作者信息

Kacker Kriti, Chetty Nikole, Feldman Ariel K, Bennett James, Yoo Peter E, Fry Adam, Lacomis David, Harel Noam Y, Nogueira Raul G, Majidi Shahram, Opie Nicholas L, Collinger Jennifer L, Oxley Thomas J, Putrino David F, Weber Douglas J

机构信息

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.

NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.

出版信息

J Neural Eng. 2025 Mar 31;22(2):026036. doi: 10.1088/1741-2552/adbd78.

Abstract

This study examined the strength and stability of motor signals in low gamma and high gamma bands of vascular electrocorticograms (vECoG) recorded with endovascular stent-electrode arrays (Stentrodes) implanted in the superior sagittal sinus of two participants with severe paralysis due to amyotrophic lateral sclerosis.vECoG signals were recorded from two participants in the COMMAND trial, an Early Feasibility Study of the Stentrode brain-computer interface (BCI) (NCT05035823). The participants performed attempted movements of their ankles or hands. The signals were band-pass filtered to isolate low gamma (30-70 Hz) and high gamma (70-200 Hz) components. The strength of vECoG motor activity was measured as signal-to-noise ratio (SNR) and the percentage change in signal amplitude between the rest and attempted movement epochs, which we termed depth of modulation (DoM). We trained and tested classifiers to evaluate the accuracy and stability of detecting motor intent.Both low gamma and high gamma were modulated during attempted movements. For Participant 1, the average DoM across channels and sessions was 125.41 ± 17.53% for low gamma and 54.23 ± 4.52% for high gamma, with corresponding SNR values of 6.75 ± 0.37 dB and 3.69 ± 0.28 dB. For Participant 2, the average DoM was 22.77 ± 4.09% for low gamma and 22.53 ± 2.04% for high gamma, with corresponding SNR values of 1.72 ± 0.25 dB and 1.73 ± 0.13 dB. vECoG amplitudes remained significantly different between rest and move periods over the 3 month testing period, with >90% accuracy in discriminating attempted movement from rest epochs for both participants. For Participant 1, the average DoM was strongest during attempted movements of both ankles, while for Participant 2, the DoM was greatest for attempted movement of the right hand. The overall classification accuracy was 91.43% for Participant 1 and 70.37% for Participant 2 in offline decoding of multiple attempted movements and rest conditions.By eliminating the need for open brain surgery, the Stentrode offers a promising BCI alternative, potentially enhancing access to BCIs for individuals with severe motor impairments. This study provides preliminary evidence that the Stentrode can detect discriminable signals indicating motor intent, with motor signal modulation observed over the 3 month testing period reported here.

摘要

本研究检测了血管内皮层脑电图(vECoG)低伽马频段(30 - 70Hz)和高伽马频段(70 - 200Hz)中运动信号的强度和稳定性,vECoG信号由植入两名因肌萎缩侧索硬化导致严重瘫痪的参与者上矢状窦的血管内支架电极阵列(Stentrodes)记录。vECoG信号记录自COMMAND试验中的两名参与者,该试验是支架电极脑机接口(BCI)的早期可行性研究(NCT05035823)。参与者尝试进行脚踝或手部运动。信号经过带通滤波以分离低伽马(30 - 70Hz)和高伽马(70 - 200Hz)成分。vECoG运动活动的强度通过信噪比(SNR)以及静息期和尝试运动期之间信号幅度的百分比变化来衡量,我们将其称为调制深度(DoM)。我们训练并测试了分类器,以评估检测运动意图的准确性和稳定性。

在尝试运动期间,低伽马和高伽马频段均受到调制。对于参与者1,跨通道和会话的低伽马平均DoM为125.41±17.53%,高伽马为54.23±4.52%,相应的SNR值分别为6.75±0.37dB和3.69±0.28dB。对于参与者2,低伽马平均DoM为22.77±4.09%,高伽马为22.53±2.04%,相应的SNR值分别为1.72±0.25dB和1.73±0.13dB。在3个月的测试期内,静息期和运动期之间的vECoG幅度仍存在显著差异,两名参与者区分尝试运动和静息期的准确率均超过90%。对于参与者1,在尝试脚踝运动时平均DoM最强,而对于参与者2,右手尝试运动时DoM最大。在离线解码多个尝试运动和静息条件时,参与者1的总体分类准确率为91.43%,参与者2为70.37%。

通过无需开颅手术,Stentrode提供了一种有前景的脑机接口替代方案,有可能增加严重运动障碍个体使用脑机接口的机会。本研究提供了初步证据,表明Stentrode能够检测到指示运动意图且可区分的信号,在此报告的3个月测试期内观察到了运动信号调制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2579/11956166/94879ca7bfc8/jneadbd78f1_hr.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验