Coleman M D, Mihaly G W, Ward S A, Edwards G, Howells R E, Breckenridge A M
Biochem Pharmacol. 1985 Jun 15;34(12):2193-7. doi: 10.1016/0006-2952(85)90417-4.
We have investigated the disposition of pyrimethamine base in the isolated perfused rat liver (IPRL) preparation after the administration of pyrimethamine (0.5 mg, 5 microCi). In the first half hour of the study, pyrimethamine underwent marked hepatic uptake, thereafter perfusate plasma drug levels declined monoexponentially with a half life (t 1/2) of 3.0 +/- 1.0 hr. Area under the perfusate plasma concentration/time curve (AUC)0----infinity was 6.9 +/- 1.9 microgram/hr/ml. Pyrimethamine was found to be a low clearance compound (78.4 +/- 25.3 ml/hr identical to 8.6% of liver perfusate flow) with a large volume of distribution (267.5 +/- 55.3 ml) in the IPRL. The combined AUCS(0----5hr) for pyrimethamine (AUC 4.8 +/- 0.5 microgram/hr/ml) and pyrimethamine 3-N-oxide (AUC0----5hr 0.9 +/- 0.6 microgram/hr/ml) accounted for 57% of the total AUC0----5hr of [14C] radioactivity (10.0 +/- 2.6 micrograms/hr/ml). This indicates the presence of metabolites of pyrimethamine as yet unidentified in the perfusate. Biliary excretion of [14C] during the course of the IPRL preparations was extensive (29.0 +/- 10.3%) though only a small proportion was due to pyrimethamine and the 3-N-oxide metabolite. The majority of radioactivity in the bile was attributable to highly polar, but unidentified metabolites of pyrimethamine. At the conclusion of each experiment (5 hr), a significant proportion of [14C] radioactivity was recovered from the livers (22.9 +/- 5.3%). Subsequent HPLC analysis of the liver tissue indicated this to be unchanged pyrimethamine, with trace levels of the 3-N-oxide metabolite. Sub-cellular fractionation of the homogenized livers revealed the most pronounced localisation of pyrimethamine to be in the lipid rich 10,000 g pellet (13.0 +/- 2.6%), the remainder being distributed equally between the 105,000 g pellet and supernatant. Neither pyrimethamine, [14C] radioactivity, nor pyrimethamine 3-N-oxide were extensively taken up by red cells throughout the study. Therefore, the large volume of distribution (267.5 +/- 55.3 ml) underlines the extent of pyrimethamine localisation in the liver.
我们研究了给予乙胺嘧啶(0.5mg,5微居里)后,乙胺嘧啶碱在离体灌注大鼠肝脏(IPRL)制剂中的处置情况。在研究的前半小时,乙胺嘧啶有明显的肝脏摄取,此后灌注液中的血浆药物水平呈单指数下降,半衰期(t1/2)为3.0±1.0小时。灌注液血浆浓度/时间曲线下面积(AUC)0至无穷大为6.9±1.9微克/小时/毫升。在IPRL中,乙胺嘧啶是一种低清除率化合物(78.4±25.3毫升/小时,相当于肝脏灌注液流量的8.6%),分布容积大(267.5±55.3毫升)。乙胺嘧啶(AUC 4.8±0.5微克/小时/毫升)和乙胺嘧啶3-N-氧化物(AUC0至5小时0.9±0.6微克/小时/毫升)的合并AUCS(0至5小时)占[14C]放射性总AUC0至5小时(10.0±2.6微克/小时/毫升)的57%。这表明灌注液中存在尚未鉴定的乙胺嘧啶代谢产物。在IPRL制剂过程中,[14C]的胆汁排泄广泛(29.0±10.3%),尽管只有一小部分是由于乙胺嘧啶和3-N-氧化物代谢产物。胆汁中的大部分放射性归因于乙胺嘧啶的高极性但未鉴定的代谢产物。在每个实验结束时(5小时),从肝脏中回收了相当比例的[14C]放射性(22.9±5.3%)。随后对肝脏组织进行的HPLC分析表明,这是未变化的乙胺嘧啶,3-N-氧化物代谢产物含量微量。对匀浆肝脏进行亚细胞分级分离显示,乙胺嘧啶最显著的定位在富含脂质的10000g沉淀中(13.0±2.6%),其余部分在105000g沉淀和上清液中平均分布。在整个研究过程中,红细胞对乙胺嘧啶、[14C]放射性或乙胺嘧啶3-N-氧化物的摄取都不广泛。因此,分布容积大(267.5±55.3毫升)突出了乙胺嘧啶在肝脏中的定位程度。