Laribi Hakima, Raymond Nicolas, Taseen Ryeyan, Poenaru Dan, Vallières Martin
Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada.
Department of Medicine, Cambridge Memorial Hospital, Cambridge, Canada.
Health Inf Sci Syst. 2025 Mar 4;13(1):23. doi: 10.1007/s13755-024-00332-4. eCollection 2025 Dec.
Predicting medium-term survival after admission is necessary for identifying end-of-life patients who may benefit from goals of care (GOC) discussions. Considering that several patients have multiple hospital admissions, this study leverages patients' longitudinal data and information collected routinely at admission to predict the Hospital One-year Mortality Risk.
We propose the Ensemble Longitudinal Network (ELN) to predict one-year mortality using patients' longitudinal records. The model was evaluated: (i) with only predictors reported upon admission (AdmDemo); and (ii) also with diagnoses available later during patients' stay (AdmDemoDx). Using records of 123,646 patients with 250,812 hospitalizations from 2011 to 2021, our dataset was split into a learning set (2011-2017) to compare models with and without longitudinal information using nested cross-validation, and a holdout set (2017-2021) to assess clinical utility towards GOC discussions.
The ELN achieved a significant increase in predictive performance using longitudinal information (-value < 0.05) for both the AdmDemo and AdmDemoDx predictors. For randomly selected hospitalizations in the holdout set, the ELN showed: (i) AUROCs of 0.83 (AdmDemo) and 0.87 (AdmDemoDx); and (ii) superior decision-making properties, notably with an increase in precision from 0.25 for the standard process to 0.28 (AdmDemo) and 0.36 (AdmDemoDx). Feature importance analysis confirmed that the utility of the longitudinal information increases with the number of patient hospitalizations.
Integrating patients' longitudinal data provides better insights into the severity of illness and the overall patient condition, in particular when limited information is available during their stay.
预测入院后的中期生存率对于识别可能从照护目标(GOC)讨论中受益的临终患者很有必要。鉴于有多位患者多次入院,本研究利用患者的纵向数据以及入院时常规收集的信息来预测医院一年死亡率风险。
我们提出了集成纵向网络(ELN),利用患者的纵向记录来预测一年死亡率。对该模型进行了评估:(i)仅使用入院时报告的预测因素(AdmDemo);(ii)还使用患者住院期间稍后可得的诊断信息(AdmDemoDx)。利用2011年至2021年123,646例患者的250,812次住院记录,我们将数据集分为一个学习集(2011 - 2017年),通过嵌套交叉验证比较有无纵向信息的模型,以及一个验证集(2017 - 2021年),以评估其对GOC讨论的临床实用性。
对于AdmDemo和AdmDemoDx预测因素,ELN利用纵向信息使预测性能显著提高(-值<0.05)。对于验证集中随机选择的住院病例,ELN显示:(i)AdmDemo的曲线下面积(AUROC)为0.83,AdmDemoDx的为0.87;(ii)具有更好的决策属性,尤其是精度从标准流程的0.25提高到了0.28(AdmDemo)和0.36(AdmDemoDx)。特征重要性分析证实,纵向信息的效用随着患者住院次数的增加而提高。
整合患者的纵向数据能更好地洞察疾病严重程度和患者整体状况,尤其是在患者住院期间可用信息有限时。