文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Improving lung cancer pathological hyperspectral diagnosis through cell-level annotation refinement.

作者信息

Yan Zhiliang, Huang Haosong, Geng Rongmei, Zhang Jingang, Chen Yu, Nie Yunfeng

机构信息

School of Aerospace Science and Technology, Xidian University, Xi'an, 710071, China.

Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510163, China.

出版信息

Sci Rep. 2025 Mar 8;15(1):8086. doi: 10.1038/s41598-025-85678-9.


DOI:10.1038/s41598-025-85678-9
PMID:40057531
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11890753/
Abstract

Lung cancer remains a major global health challenge, and accurate pathological examination is crucial for early detection. This study aims to enhance hyperspectral pathological image analysis by refining annotations at the cell level and creating a high-quality hyperspectral dataset of lung tumors. We address the challenge of coarse manual annotations in hyperspectral lung cancer datasets, which limit the effectiveness of deep learning models requiring precise labels for training. We propose a semi-automated annotation refinement method that leverages hyperspectral data to enhance pathological diagnosis. Specifically, we employ K-means unsupervised clustering combined with human-guided selection to refine coarse annotations into cell-level masks based on spectral features. Our method is validated using a hyperspectral lung squamous cell carcinoma dataset containing 65 image samples. Experimental results demonstrate that our approach improves pixel-level segmentation accuracy from 77.33% to 92.52% with a lower level of prediction noise. The time required to accurately label each pathological slide is significantly reduced. While pixel-level labeling methods for an entire slide can take over 30 mins, our semi-automated method requires only about 5 mins. To enhance visualization for pathologists, we apply a conservative post-processing strategy for instance segmentation. These results highlight the effectiveness of our method in addressing annotation challenges and improving the accuracy of hyperspectral pathological analysis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/3280857d86d6/41598_2025_85678_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/eea2fa4cab8f/41598_2025_85678_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/be5298cabf42/41598_2025_85678_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/8f9644fe8533/41598_2025_85678_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/7c22d761db8e/41598_2025_85678_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/f80c82b39396/41598_2025_85678_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/525b67e3ca44/41598_2025_85678_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/6a5f368abc52/41598_2025_85678_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/5027fbb4c604/41598_2025_85678_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/3280857d86d6/41598_2025_85678_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/eea2fa4cab8f/41598_2025_85678_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/be5298cabf42/41598_2025_85678_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/8f9644fe8533/41598_2025_85678_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/7c22d761db8e/41598_2025_85678_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/f80c82b39396/41598_2025_85678_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/525b67e3ca44/41598_2025_85678_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/6a5f368abc52/41598_2025_85678_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/5027fbb4c604/41598_2025_85678_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11890753/3280857d86d6/41598_2025_85678_Fig9_HTML.jpg

相似文献

[1]
Improving lung cancer pathological hyperspectral diagnosis through cell-level annotation refinement.

Sci Rep. 2025-3-8

[2]
Cost-efficient training of hyperspectral deep learning models for the detection of contaminating grains in bulk oats by fluorescent tagging.

Spectrochim Acta A Mol Biomol Spectrosc. 2025-5-5

[3]
A semi-supervised segmentation method for microscopic hyperspectral pathological images based on multi-consistency learning.

Front Oncol. 2024-6-19

[4]
Hyperspectral dark-field microscopy of human breast lumpectomy samples for tumor margin detection in breast-conserving surgery.

J Biomed Opt. 2024-9

[5]
A novel visible and near-infrared hyperspectral imaging platform for automated breast-cancer detection.

Photodiagnosis Photodyn Ther. 2024-4

[6]
Label-efficient sequential model-based weakly supervised intracranial hemorrhage segmentation in low-data non-contrast CT imaging.

Med Phys. 2025-4

[7]
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images.

Comput Biol Med. 2024-12

[8]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[9]
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis.

IEEE Trans Cybern. 2020-9

[10]
Combating Medical Label Noise through more precise partition-correction and progressive hard-enhanced learning.

Comput Methods Programs Biomed. 2025-6

本文引用的文献

[1]
TAJ-Net: a two-stage clustered cell segmentation network with adaptive joint learning of spatial and spectral information.

Biomed Opt Express. 2024-7-9

[2]
Integrating climate change predictions into infrastructure degradation modelling using advanced markovian frameworks to enhanced resilience.

J Environ Manage. 2024-9

[3]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[4]
FD-Net: Feature Distillation Network for Oral Squamous Cell Carcinoma Lymph Node Segmentation in Hyperspectral Imagery.

IEEE J Biomed Health Inform. 2024-3

[5]
The global burden of lung cancer: current status and future trends.

Nat Rev Clin Oncol. 2023-9

[6]
Comparative oncology: overcoming human cancer through companion animal studies.

Exp Mol Med. 2023-4

[7]
Staging of Skin Cancer Based on Hyperspectral Microscopic Imaging and Machine Learning.

Biosensors (Basel). 2022-9-25

[8]
Automatic detection of head and neck squamous cell carcinoma on histologic slides using hyperspectral microscopic imaging.

J Biomed Opt. 2022-4

[9]
3D-PulCNN: Pulmonary cancer classification from hyperspectral images using convolution combination unit based CNN.

J Biophotonics. 2021-12

[10]
Cancer statistics for the year 2020: An overview.

Int J Cancer. 2021-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索