Suppr超能文献

一种用于病理性肺癌图像多层次图像分割的自适应增强人类记忆算法。

An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images.

机构信息

Faculty of Computers and Information Science, Mansoura University, Mansoura, Egypt.

Faculty of Computers and Information, Minia University, Minia, Egypt.

出版信息

Comput Biol Med. 2024 Dec;183:109272. doi: 10.1016/j.compbiomed.2024.109272. Epub 2024 Oct 16.

Abstract

Lung cancer is a critical health issue that demands swift and accurate diagnosis for effective treatment. In medical imaging, segmentation is crucial for identifying and isolating regions of interest, which is essential for precise diagnosis and treatment planning. Traditional metaheuristic-based segmentation methods often struggle with slow convergence speed, poor optimized thresholds results, balancing exploration and exploitation, leading to suboptimal performance in the multi-thresholding segmenting of lung cancer images. This study presents ASG-HMO, an enhanced variant of the Human Memory Optimization (HMO) algorithm, selected for its simplicity, versatility, and minimal parameters. Although HMO has never been applied to multi-thresholding image segmentation, its characteristics make it ideal to improve pathology lung cancer image segmentation. The ASG-HMO incorporating four innovative strategies that address key challenges in the segmentation process. Firstly, the enhanced adaptive mutualism phase is proposed to balance exploration and exploitation to accurately delineate tumor boundaries without getting trapped in suboptimal solutions. Second, the spiral motion strategy is utilized to adaptively refines segmentation solutions by focusing on both the overall lung structure and the intricate tumor details. Third, the gaussian mutation strategy introduces diversity in the search process, enabling the exploration of a broader range of segmentation thresholds to enhance the accuracy of segmented regions. Finally, the adaptive t-distribution disturbance strategy is proposed to help the algorithm avoid local optima and refine segmentation in later stages. The effectiveness of ASG-HMO is validated through rigorous testing on the IEEE CEC'17 and CEC'20 benchmark suites, followed by its application to multilevel thresholding segmentation in nine histopathology lung cancer images. In these experiments, six different segmentation thresholds were tested, and the algorithm was compared to several classical, recent, and advanced segmentation algorithms. In addition, the proposed ASG-HMO leverages 2D Renyi entropy and 2D histograms to enhance the precision of the segmentation process. Quantitative result analysis in pathological lung cancer segmentation showed that ASG-HMO achieved superior maximum Peak Signal-to-Noise Ratio (PSNR) of 31.924, Structural Similarity Index Measure (SSIM) of 0.919, Feature Similarity Index Measure (FSIM) of 0.990, and Probability Rand Index (PRI) of 0.924. These results indicate that ASG-HMO significantly outperforms existing algorithms in both convergence speed and segmentation accuracy. This demonstrates the robustness of ASG-HMO as a framework for precise segmentation of pathological lung cancer images, offering substantial potential for improving clinical diagnostic processes.

摘要

肺癌是一个严重的健康问题,需要快速准确的诊断才能进行有效的治疗。在医学成像中,分割对于识别和隔离感兴趣的区域至关重要,这对于精确诊断和治疗计划至关重要。传统的基于元启发式的分割方法通常存在收敛速度慢、优化阈值结果差、平衡探索和利用等问题,导致在肺癌图像的多阈值分割中表现不佳。本研究提出了 ASG-HMO,这是一种增强型人类记忆优化 (HMO) 算法变体,因其简单性、多功能性和最小参数而被选中。尽管 HMO 从未应用于多阈值图像分割,但它的特征使其非常适合改善病理学肺癌图像分割。ASG-HMO 采用了四种创新策略,这些策略解决了分割过程中的关键挑战。首先,提出了增强的自适应共生阶段,以平衡探索和利用,从而准确描绘肿瘤边界,避免陷入次优解决方案。其次,利用螺旋运动策略自适应地细化分割解决方案,同时关注整体肺部结构和复杂的肿瘤细节。第三,引入了高斯突变策略,在搜索过程中引入多样性,从而可以探索更广泛的分割阈值范围,提高分割区域的准确性。最后,提出了自适应 t 分布干扰策略,帮助算法避免局部最优,并在后期细化分割。通过在 IEEE CEC'17 和 CEC'20 基准套件上进行严格测试,验证了 ASG-HMO 的有效性,然后将其应用于九张组织病理学肺癌图像的多级阈值分割。在这些实验中,测试了六个不同的分割阈值,并将该算法与几种经典、最近和先进的分割算法进行了比较。此外,所提出的 ASG-HMO 利用二维 Renyi 熵和二维直方图来提高分割过程的精度。对病理性肺癌分割的定量结果分析表明,ASG-HMO 实现了卓越的最大峰值信噪比 (PSNR)31.924、结构相似性指数测量 (SSIM)0.919、特征相似性指数测量 (FSIM)0.990 和概率 Rand 指数 (PRI)0.924。这些结果表明,ASG-HMO 在收敛速度和分割精度方面均显著优于现有算法。这表明 ASG-HMO 作为病理性肺癌图像精确分割的框架具有很强的鲁棒性,为改善临床诊断过程提供了很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验