Yu Jingwei
School of Intelligent Transportation College, Nanjing Vocational College of Information Technology, Nanjing, 210003, China.
Sci Rep. 2025 Mar 9;15(1):8155. doi: 10.1038/s41598-025-91744-z.
Data-driven analytical methods have seen significant advancements, leading to the proposal of various frameworks for assessing the spatiotemporal impacts of freeway traffic accidents. Typically, the impact of such accidents is identified by comparing traffic speeds under normal conditions with those observed during the accident. This paper introduces a novel framework designed to estimate these impacts. To overcome challenges related to insufficient historical data or concerns about data quality, the framework utilizes predictive speed values to estimate normal expected speeds, rather than relying solely on average values, for calculating the speed change ratio. Furthermore, the framework incorporates an analysis of spatiotemporal mutation points in the speed change ratio, simplifying the impact area by delineating the envelope of the traffic accident propagation curve. This curve reflects trends in speed changes and impact propagation. Additionally, a method for analyzing the error in the spatiotemporal impact range is proposed, allowing for the determination of the maximum and minimum extents of the accident's impact propagation area. The practicality and effectiveness of the proposed framework are demonstrated through a case study.
数据驱动的分析方法取得了显著进展,催生了各种用于评估高速公路交通事故时空影响的框架。通常,此类事故的影响是通过将正常情况下的交通速度与事故期间观测到的速度进行比较来确定的。本文介绍了一种旨在估计这些影响的新颖框架。为了克服与历史数据不足或数据质量问题相关的挑战,该框架利用预测速度值来估计正常预期速度,而不是仅依赖平均值来计算速度变化率。此外,该框架纳入了对速度变化率中时空突变点的分析,通过描绘交通事故传播曲线的包络来简化影响区域。这条曲线反映了速度变化和影响传播的趋势。此外,还提出了一种分析时空影响范围误差的方法,从而能够确定事故影响传播区域的最大和最小范围。通过案例研究证明了所提出框架的实用性和有效性。