Li Yiqun, Nieva-Esteve Gloria, Borrós Salvador, Texidó Bartés Robert, Pena-Francesch Abdon
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Chemical Engineering and Materials Science, Grup d'Enginyeria de Materials (GEMAT) Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, Barcelona 08017, Spain.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1806-1817. doi: 10.1021/acsbiomaterials.4c01441. Epub 2024 Dec 31.
Creating customizable soft medical implants and devices tailored to patient-specific anatomy represents a significant challenge in healthcare, requiring 3D-printable materials with viscoelastic properties similar to those of natural tissue, high adaptability, and biocompatibility. Here, we develop a family of silicone organogel inks for 3D printing of tunable soft biomaterials via direct ink writing (DIW). We have developed a set of ink formulations comprising photo-cross-linkable silicone polymers, silicone oil, and fumed silica nanoparticles to modify the rheological behavior of the inks, optimize their printability, and control the viscoelastic properties of the printed organogel materials. The formulation approach decouples ink viscosity and shear-thinning behavior from the properties of the printed organogel materials, yielding soft elastomeric materials spanning 3 orders of magnitude in moduli. These organogel inks were used in multimaterial DIW to print soft-structured materials with nonlinear behavior, leveraging graded spatial heterogeneity to introduce stress dissipation and out-of-plane deformation mechanisms. The biocompatibility of these organogel materials was analyzed through a variety of cytotoxicity assays with human dermal fibroblasts, showing no significant toxicity, even in formulations with high silicone oil content. Due to their wide tunability, biocompatibility, and easy printability, these silicone organogel materials show great potential for 3D printing customizable soft devices useful in many applications, including patient-specific implants, prosthetics, wearable devices, medical phantoms, soft robotics, and medical devices.
制造适合患者特定解剖结构的可定制软性医疗植入物和设备是医疗保健领域的一项重大挑战,需要具有与天然组织相似的粘弹性、高适应性和生物相容性的3D可打印材料。在此,我们开发了一族用于通过直接墨水书写(DIW)3D打印可调软性生物材料的有机硅有机凝胶墨水。我们开发了一组墨水配方,包括可光交联的有机硅聚合物、硅油和气相二氧化硅纳米颗粒,以改变墨水的流变行为,优化其可打印性,并控制打印的有机凝胶材料的粘弹性。该配方方法将墨水粘度和剪切变稀行为与打印的有机凝胶材料的性能解耦,产生模量跨越3个数量级的软性弹性体材料。这些有机凝胶墨水用于多材料DIW,以打印具有非线性行为的软性结构材料,利用渐变的空间异质性引入应力耗散和面外变形机制。通过对人真皮成纤维细胞进行的各种细胞毒性试验分析了这些有机凝胶材料的生物相容性,结果表明即使在硅油含量高的配方中也没有明显毒性。由于其广泛的可调性、生物相容性和易于打印性,这些有机硅有机凝胶材料在3D打印可定制软性设备方面显示出巨大潜力,可用于许多应用,包括患者特定的植入物、假肢、可穿戴设备、医学模型、软性机器人和医疗设备。