Suppr超能文献

用于多囊卵巢综合征(PCOS)检测的区块链与可解释人工智能集成系统。

Blockchain and explainable-AI integrated system for Polycystic Ovary Syndrome (PCOS) detection.

作者信息

Jaganathan Gowthami, Natesan Shanthi

机构信息

Department of Computer Science and Engineering, Kongu Engineering College, Erode, Tamilnadu, India.

出版信息

PeerJ Comput Sci. 2025 Feb 28;11:e2702. doi: 10.7717/peerj-cs.2702. eCollection 2025.

Abstract

In the modern era of digitalization, integration with blockchain and machine learning (ML) technologies is most important for improving applications in healthcare management and secure prediction analysis of health data. This research aims to develop a novel methodology for securely storing patient medical data and analyzing it for PCOS prediction. The main goals are to leverage Hyperledger Fabric for immutable, private data and to integrate Explainable Artificial Intelligence (XAI) techniques to enhance transparency in decision-making. The innovation of this study is the unique integration of blockchain technology with ML and XAI, solving critical issues of data security and model interpretability in healthcare. With the Caliper tool, the Hyperledger Fabric blockchain's performance is evaluated and enhanced. The suggested Explainable AI-based blockchain system for Polycystic Ovary Syndrome detection (EAIBS-PCOS) system demonstrates outstanding performance and records 98% accuracy, 100% precision, 98.04% recall, and a resultant F1-score of 99.01%. Such quantitative measures ensure the success of the proposed methodology in delivering dependable and intelligible predictions for PCOS diagnosis, therefore making a great addition to the literature while serving as a solid solution for healthcare applications in the near future.

摘要

在数字化的现代时代,与区块链和机器学习(ML)技术的集成对于改善医疗管理应用以及健康数据的安全预测分析最为重要。本研究旨在开发一种新颖的方法,用于安全存储患者医疗数据并对其进行多囊卵巢综合征(PCOS)预测分析。主要目标是利用超级账本织物(Hyperledger Fabric)实现数据的不可变和隐私保护,并集成可解释人工智能(XAI)技术以提高决策透明度。本研究的创新之处在于将区块链技术与ML和XAI进行独特整合,解决了医疗保健中数据安全和模型可解释性的关键问题。使用卡尺工具对超级账本织物区块链的性能进行评估和优化。所提出的用于多囊卵巢综合征检测的基于可解释人工智能的区块链系统(EAIBS-PCOS)表现出色,准确率达到98%,精确率为100%,召回率为98.04%,F1分数为99.01%。这些量化指标确保了所提方法在为PCOS诊断提供可靠且可理解的预测方面取得成功,因此在丰富文献的同时,也将成为近期医疗保健应用的坚实解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d13/11888934/05c42e181851/peerj-cs-11-2702-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验