Suppr超能文献

基于区块链联合与深度学习的胶囊网络集成及增量极限学习机用于COVID-19 CT扫描图像分类

Blockchain-Federated and Deep-Learning-Based Ensembling of Capsule Network with Incremental Extreme Learning Machines for Classification of COVID-19 Using CT Scans.

作者信息

Malik Hassaan, Anees Tayyaba, Naeem Ahmad, Naqvi Rizwan Ali, Loh Woong-Kee

机构信息

Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan.

Department of Software Engineering, University of Management and Technology, Lahore 54000, Pakistan.

出版信息

Bioengineering (Basel). 2023 Feb 3;10(2):203. doi: 10.3390/bioengineering10020203.

Abstract

Due to the rapid rate of SARS-CoV-2 dissemination, a conversant and effective strategy must be employed to isolate COVID-19. When it comes to determining the identity of COVID-19, one of the most significant obstacles that researchers must overcome is the rapid propagation of the virus, in addition to the dearth of trustworthy testing models. This problem continues to be the most difficult one for clinicians to deal with. The use of AI in image processing has made the formerly insurmountable challenge of finding COVID-19 situations more manageable. In the real world, there is a problem that has to be handled about the difficulties of sharing data between hospitals while still honoring the privacy concerns of the organizations. When training a global deep learning (DL) model, it is crucial to handle fundamental concerns such as user privacy and collaborative model development. For this study, a novel framework is designed that compiles information from five different databases (several hospitals) and edifies a global model using blockchain-based federated learning (FL). The data is validated through the use of blockchain technology (BCT), and FL trains the model on a global scale while maintaining the secrecy of the organizations. The proposed framework is divided into three parts. First, we provide a method of data normalization that can handle the diversity of data collected from five different sources using several computed tomography (CT) scanners. Second, to categorize COVID-19 patients, we ensemble the capsule network (CapsNet) with incremental extreme learning machines (IELMs). Thirdly, we provide a strategy for interactively training a global model using BCT and FL while maintaining anonymity. Extensive tests employing chest CT scans and a comparison of the classification performance of the proposed model to that of five DL algorithms for predicting COVID-19, while protecting the privacy of the data for a variety of users, were undertaken. Our findings indicate improved effectiveness in identifying COVID-19 patients and achieved an accuracy of 98.99%. Thus, our model provides substantial aid to medical practitioners in their diagnosis of COVID-19.

摘要

由于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)传播速度很快,必须采用一种熟悉且有效的策略来隔离新型冠状病毒肺炎(COVID-19)患者。在确定COVID-19的特征时,研究人员必须克服的最重大障碍之一是病毒的快速传播,此外还缺乏可靠的检测模型。这个问题仍然是临床医生最难处理的问题。人工智能在图像处理中的应用使发现COVID-19病例这一以前无法克服的挑战变得更易于应对。在现实世界中,存在一个必须解决的问题,即在尊重各机构隐私问题的同时,处理医院之间的数据共享困难。在训练全球深度学习(DL)模型时,处理诸如用户隐私和协作模型开发等基本问题至关重要。在本研究中,设计了一个新颖的框架,该框架整合来自五个不同数据库(几家医院)的信息,并使用基于区块链的联邦学习(FL)构建一个全球模型。通过使用区块链技术(BCT)对数据进行验证,并且FL在全球范围内训练模型,同时保持各机构的保密性。所提出的框架分为三个部分。首先,我们提供一种数据归一化方法,该方法可以使用几台计算机断层扫描(CT)扫描仪处理从五个不同来源收集的数据的多样性。其次,为了对COVID-19患者进行分类,我们将胶囊网络(CapsNet)与增量极限学习机(IELM)集成在一起。第三,我们提供一种策略,用于在保持匿名的同时,使用BCT和FL交互式训练全球模型。我们进行了大量使用胸部CT扫描的测试,并将所提出模型的分类性能与用于预测COVID-19的五种DL算法的性能进行比较,同时保护各种用户的数据隐私。我们的研究结果表明,在识别COVID-19患者方面有效性有所提高,准确率达到了98.99%。因此,我们的模型为医生诊断COVID-19提供了很大帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/651a/9952069/3cd5b5a365c1/bioengineering-10-00203-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验