Hao Yifei, Li Tianlin, Hong Xia
Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
Chem Commun (Camb). 2025 Mar 25;61(26):4924-4950. doi: 10.1039/d4cc05836d.
Capitalizing on the nonvolatile, nanoscale controllable polarization, ferroelectric perovskite oxides can be integrated with various functional materials for designing emergent phenomena enabled by charge, lattice, and polar symmetry mediated interfacial coupling, as well as for constructing novel energy-efficient electronics and nanophotonics with programmable functionalities. When prepared in thin film or membrane forms, the ferroelectric instability of these materials is highly susceptible to the interfacial electrostatic and mechanical boundary conditions, resulting in tunable polarization fields and Curie temperatures and domain formation. This review focuses on two types of ferroelectric oxide-based heterostructures: the epitaxial perovskite oxide heterostructures and the ferroelectric oxides interfaced with two-dimensional van der Waals materials. The topics covered include the basic synthesis methods for ferroelectric oxide thin films, membranes, and heterostructures, characterization of their properties, and various emergent phenomena hosted by the heterostructures, including the polarization-controlled metal-insulator transition and magnetic anisotropy, negative capacitance effect, domain-imposed one-dimensional graphene superlattices, programmable second harmonic generation, and interface-enhanced polar alignment and piezoelectric response, as well as their applications in nonvolatile memory, logic, and reconfigurable optical devices. Possible future research directions are also outlined, encompassing the synthesis remote epitaxy and oxide moiré engineering, incorporation of binary ferroelectric oxides, realization of topological properties, and functional design of oxygen octahedral rotation.
利用铁电钙钛矿氧化物的非挥发性、纳米级可控极化特性,可以将其与各种功能材料集成,以设计由电荷、晶格和极性对称介导的界面耦合所产生的新现象,以及构建具有可编程功能的新型节能电子器件和纳米光子学器件。当以薄膜或膜形式制备时,这些材料的铁电不稳定性极易受到界面静电和机械边界条件的影响,从而导致可调极化场、居里温度和畴的形成。本综述聚焦于两类基于铁电氧化物的异质结构:外延钙钛矿氧化物异质结构和与二维范德华材料界面结合的铁电氧化物。涵盖的主题包括铁电氧化物薄膜、膜和异质结构的基本合成方法、其性能表征以及异质结构所呈现的各种新现象,包括极化控制的金属 - 绝缘体转变和磁各向异性、负电容效应、畴诱导的一维石墨烯超晶格、可编程二次谐波产生以及界面增强的极性排列和压电响应;以及它们在非易失性存储器、逻辑和可重构光学器件中的应用。还概述了未来可能的研究方向,包括合成远程外延和氧化物莫尔工程、二元铁电氧化物的掺入、拓扑性质的实现以及氧八面体旋转的功能设计。