Kralj Jason G, Servetas Stephanie L, Forry Samuel P, Hunter Monique E, Dootz Jennifer N, Jackson Scott A
Complex Microbial Systems Group, Biosystems and Biomaterials Division, Materials Measurements Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
Microbiol Spectr. 2025 Apr;13(4):e0280624. doi: 10.1128/spectrum.02806-24. Epub 2025 Mar 10.
We assessed the analytical performance of metagenomic workflows using NIST Reference Material (RM) 8376 DNA from bacterial pathogens spiked into two simulated clinical samples: cerebrospinal fluid (CSF) and stool. Sequencing and taxonomic classification were used to generate signals for each sample and taxa of interest and to estimate the limit of detection (LOD), the linearity of response, and linear dynamic range. We found that the LODs for taxa spiked into CSF ranged from approximately 100 to 300 copy/mL, with a linearity of 0.96 to 0.99. For stool, the LODs ranged from 10 to 221 kcopy/mL, with a linearity of 0.99 to 1.01. Furthermore, discriminating different strains proved to be workflow-dependent as only one classifier:database combination of the three tested showed the ability to differentiate the two pathogenic and commensal strains. Surprisingly, when we compared the linear response of the same taxa in the two different sample types, we found those functions to be the same, despite large differences in LODs. This suggests that the "agnostic diagnostic" theory for metagenomics (i.e., any organism can be identified because DNA is the measurand) may apply to different target organisms and different sample types. Because we are using RMs, we were able to generate quantitative analytical performance metrics for each workflow and sample set, enabling relatively rapid workflow screening before employing clinical samples. This makes these RMs a useful tool that will generate data needed to support the translation of metagenomics into regulated use.IMPORTANCEAssessing the analytical performance of metagenomic workflows, especially when developing clinical diagnostics, is foundational for ensuring that the measurements underlying a diagnosis are supported by rigorous characterization. To facilitate the translation of metagenomics into clinical practice, workflows must be tested using control samples designed to probe the analytical limitations (e.g., limit of detection). Spike-ins allow developers to generate fit-for-purpose control samples for initial workflow assessments and inform decisions about further development. However, clinical sample types include a wide range of compositions and concentrations, each presenting different detection challenges. In this work, we demonstrate how spike-ins elucidate workflow performance in two highly dissimilar sample types (stool and CSF), and we provide evidence that detection of individual organisms is unaffected by background sample composition, making detection sample-agnostic within a workflow. These demonstrations and performance insights will facilitate the translation of the technology to the clinic.
我们使用添加了来自细菌病原体的美国国家标准与技术研究院(NIST)参考物质(RM)8376 DNA的两种模拟临床样本:脑脊液(CSF)和粪便,评估了宏基因组学工作流程的分析性能。测序和分类学分类用于为每个样本和感兴趣的分类群生成信号,并估计检测限(LOD)、响应线性和线性动态范围。我们发现,添加到脑脊液中的分类群的检测限约为100至300拷贝/毫升,线性为0.96至0.99。对于粪便,检测限为10至221千拷贝/毫升,线性为0.99至1.01。此外,事实证明区分不同菌株取决于工作流程,因为在测试的三种分类器:数据库组合中,只有一种显示出区分两种致病菌株和共生菌株的能力。令人惊讶的是,当我们比较两种不同样本类型中相同分类群的线性响应时,我们发现尽管检测限存在很大差异,但这些函数是相同的。这表明宏基因组学的“无差别诊断”理论(即任何生物体都可以被识别,因为DNA是被测量物)可能适用于不同的目标生物体和不同的样本类型。由于我们使用的是参考物质,我们能够为每个工作流程和样本集生成定量分析性能指标,从而在使用临床样本之前能够相对快速地筛选工作流程。这使得这些参考物质成为一种有用的工具,将生成支持宏基因组学转化为规范用途所需的数据。
重要性
评估宏基因组学工作流程的分析性能,尤其是在开发临床诊断方法时,是确保诊断所依据的测量得到严格表征支持的基础。为了促进宏基因组学向临床实践的转化,必须使用旨在探究分析局限性(例如检测限)的对照样本对工作流程进行测试。添加物使开发者能够生成适用于初始工作流程评估的对照样本,并为进一步开发的决策提供信息。然而,临床样本类型包括各种各样的成分和浓度,每种都带来不同的检测挑战。在这项工作中,我们展示了添加物如何阐明两种非常不同的样本类型(粪便和脑脊液)中的工作流程性能,并且我们提供了证据表明单个生物体的检测不受背景样本成分的影响,从而使工作流程中的检测与样本无关。这些演示和性能见解将促进该技术向临床的转化。