Department of Population Health and Pathobiology, North Carolina State University, Raleigh, United States.
Department of Biostatistics, University of Washington, Seattle, United States.
Elife. 2019 Sep 10;8:e46923. doi: 10.7554/eLife.46923.
Marker-gene and metagenomic sequencing have profoundly expanded our ability to measure biological communities. But the measurements they provide differ from the truth, often dramatically, because these experiments are biased toward detecting some taxa over others. This experimental bias makes the taxon or gene abundances measured by different protocols quantitatively incomparable and can lead to spurious biological conclusions. We propose a mathematical model for how bias distorts community measurements based on the properties of real experiments. We validate this model with 16S rRNA gene and shotgun metagenomics data from defined bacterial communities. Our model better fits the experimental data despite being simpler than previous models. We illustrate how our model can be used to evaluate protocols, to understand the effect of bias on downstream statistical analyses, and to measure and correct bias given suitable calibration controls. These results illuminate new avenues toward truly quantitative and reproducible metagenomics measurements.
标记基因和宏基因组测序极大地扩展了我们测量生物群落的能力。但是,它们提供的测量结果与实际情况存在差异,通常差异非常大,因为这些实验偏向于检测某些分类群而不是其他分类群。这种实验偏差使得不同方案测量的分类群或基因丰度在定量上不可比,并可能导致虚假的生物学结论。我们根据实际实验的性质提出了一个关于偏差如何扭曲群落测量的数学模型。我们使用来自定义细菌群落的 16S rRNA 基因和鸟枪法宏基因组学数据验证了该模型。尽管我们的模型比以前的模型更简单,但它更符合实验数据。我们说明了如何使用我们的模型来评估方案,了解偏差对下游统计分析的影响,以及在给定适当校准控制的情况下测量和纠正偏差。这些结果为实现真正定量和可重复的宏基因组学测量开辟了新途径。
BMC Microbiol. 2015-3-21
Microbiome. 2019-3-26
Pac Symp Biocomput. 2011
Front Microbiol. 2025-8-18
Nat Commun. 2025-9-1
iScience. 2025-6-27
bioRxiv. 2025-7-31
Nat Rev Gastroenterol Hepatol. 2025-7-31
iScience. 2025-4-2
Trends Microbiol. 2018-11-26
mSystems. 2018-11-13
Nat Biotechnol. 2018-8-27
mSystems. 2018-7-17
Nat Methods. 2018-4-27
PLoS Comput Biol. 2018-4-23
Bioinformatics. 2018-7-15