文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

宏基因组测序实验中的一致且可纠正的偏倚。

Consistent and correctable bias in metagenomic sequencing experiments.

机构信息

Department of Population Health and Pathobiology, North Carolina State University, Raleigh, United States.

Department of Biostatistics, University of Washington, Seattle, United States.

出版信息

Elife. 2019 Sep 10;8:e46923. doi: 10.7554/eLife.46923.


DOI:10.7554/eLife.46923
PMID:31502536
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6739870/
Abstract

Marker-gene and metagenomic sequencing have profoundly expanded our ability to measure biological communities. But the measurements they provide differ from the truth, often dramatically, because these experiments are biased toward detecting some taxa over others. This experimental bias makes the taxon or gene abundances measured by different protocols quantitatively incomparable and can lead to spurious biological conclusions. We propose a mathematical model for how bias distorts community measurements based on the properties of real experiments. We validate this model with 16S rRNA gene and shotgun metagenomics data from defined bacterial communities. Our model better fits the experimental data despite being simpler than previous models. We illustrate how our model can be used to evaluate protocols, to understand the effect of bias on downstream statistical analyses, and to measure and correct bias given suitable calibration controls. These results illuminate new avenues toward truly quantitative and reproducible metagenomics measurements.

摘要

标记基因和宏基因组测序极大地扩展了我们测量生物群落的能力。但是,它们提供的测量结果与实际情况存在差异,通常差异非常大,因为这些实验偏向于检测某些分类群而不是其他分类群。这种实验偏差使得不同方案测量的分类群或基因丰度在定量上不可比,并可能导致虚假的生物学结论。我们根据实际实验的性质提出了一个关于偏差如何扭曲群落测量的数学模型。我们使用来自定义细菌群落的 16S rRNA 基因和鸟枪法宏基因组学数据验证了该模型。尽管我们的模型比以前的模型更简单,但它更符合实验数据。我们说明了如何使用我们的模型来评估方案,了解偏差对下游统计分析的影响,以及在给定适当校准控制的情况下测量和纠正偏差。这些结果为实现真正定量和可重复的宏基因组学测量开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/cb2ce59851e3/elife-46923-resp-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/af3709ab287d/elife-46923-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/ee663902ee48/elife-46923-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/0b031b2f81f8/elife-46923-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/a8bfb44c73ed/elife-46923-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/fc68dacd25bc/elife-46923-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/994bae6de5e3/elife-46923-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/b27d72899251/elife-46923-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/6d6d3890e3f6/elife-46923-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/7a7ca0916ccf/elife-46923-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/2feb5abac01e/elife-46923-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/952c11948fa7/elife-46923-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/1362f435ddf6/elife-46923-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/cb2ce59851e3/elife-46923-resp-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/af3709ab287d/elife-46923-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/ee663902ee48/elife-46923-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/0b031b2f81f8/elife-46923-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/a8bfb44c73ed/elife-46923-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/fc68dacd25bc/elife-46923-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/994bae6de5e3/elife-46923-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/b27d72899251/elife-46923-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/6d6d3890e3f6/elife-46923-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/7a7ca0916ccf/elife-46923-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/2feb5abac01e/elife-46923-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/952c11948fa7/elife-46923-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/1362f435ddf6/elife-46923-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c4/6739870/cb2ce59851e3/elife-46923-resp-fig1.jpg

相似文献

[1]
Consistent and correctable bias in metagenomic sequencing experiments.

Elife. 2019-9-10

[2]
The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies.

BMC Microbiol. 2015-3-21

[3]
Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data.

Microbiome. 2018-12-17

[4]
Full-length 16S rRNA gene classification of Atlantic salmon bacteria and effects of using different 16S variable regions on community structure analysis.

Microbiologyopen. 2019-7-4

[5]
VITCOMIC2: visualization tool for the phylogenetic composition of microbial communities based on 16S rRNA gene amplicons and metagenomic shotgun sequencing.

BMC Syst Biol. 2018-3-19

[6]
Bioinformatic Approaches Including Predictive Metagenomic Profiling Reveal Characteristics of Bacterial Response to Petroleum Hydrocarbon Contamination in Diverse Environments.

Sci Rep. 2017-4-24

[7]
Broadscale Ecological Patterns Are Robust to Use of Exact Sequence Variants versus Operational Taxonomic Units.

mSphere. 2018-7-18

[8]
Metagenomic reconstructions of gut microbial metabolism in weanling pigs.

Microbiome. 2019-3-26

[9]
Metagenomic analysis reveals rapid development of soil biota on fresh volcanic ash.

Sci Rep. 2020-12-8

[10]
Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics.

Pac Symp Biocomput. 2011

引用本文的文献

[1]
Measurement quality metrics to improve absolute microbial cell counting.

Front Microbiol. 2025-8-18

[2]
Microbiome data integration via shared dictionary learning.

Nat Commun. 2025-9-1

[3]
Integrative analysis of microbial 16S gene and shotgun metagenomic sequencing data improves statistical efficiency in testing differential abundance.

J Am Stat Assoc. 2025-8-5

[4]
Melody: meta-analysis of microbiome association studies for discovering generalizable microbial signatures.

Genome Biol. 2025-8-18

[5]
Integrating air microbiome for comprehensive air quality analysis.

iScience. 2025-6-27

[6]
PCR Bias Impacts Microbiome Ecological Analyses.

bioRxiv. 2025-7-31

[7]
Credible inferences in microbiome research: ensuring rigour, reproducibility and relevance in the era of AI.

Nat Rev Gastroenterol Hepatol. 2025-7-31

[8]
Metagenomic estimation of absolute bacterial biomass in the mammalian gut through host-derived read normalization.

mSystems. 2025-8-19

[9]
Replacing normalizations with interval assumptions enhances differential expression and differential abundance analyses.

BMC Bioinformatics. 2025-7-1

[10]
Food fermentation in space: Opportunities and challenges.

iScience. 2025-4-2

本文引用的文献

[1]
Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data.

Microbiome. 2018-12-17

[2]
Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations.

Trends Microbiol. 2018-11-26

[3]
Evaluating the Information Content of Shallow Shotgun Metagenomics.

mSystems. 2018-11-13

[4]
A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life.

Nat Biotechnol. 2018-8-27

[5]
Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures.

Mol Ecol. 2018-9-7

[6]
Balances: a New Perspective for Microbiome Analysis.

mSystems. 2018-7-17

[7]
Computational correction of index switching in multiplexed sequencing libraries.

Nat Methods. 2018-4-27

[8]
Correcting for batch effects in case-control microbiome studies.

PLoS Comput Biol. 2018-4-23

[9]
Taxon Disappearance from Microbiome Analysis Reinforces the Value of Mock Communities as a Standard in Every Sequencing Run.

mSystems. 2018-4-3

[10]
Updating the 97% identity threshold for 16S ribosomal RNA OTUs.

Bioinformatics. 2018-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索