Suppr超能文献

在绕过限制修饰系统的情况下,在[具体生物或环境等,原文未明确]中实现高效的CRISPR-Cas9碱基编辑。

Highly efficient CRISPR-Cas9 base editing in with bypass of restriction modification systems.

作者信息

Lin Hung-Chun, Hsiao Wan-Chi, Hsu Ya-Chen, Lin Meng-Chieh, Hsu Cheng-Chih, Zhang Mingzi M

机构信息

Department of Chemistry, National Taiwan University, Taipei, Taiwan.

Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.

出版信息

Appl Environ Microbiol. 2025 Apr 23;91(4):e0198524. doi: 10.1128/aem.01985-24. Epub 2025 Mar 10.

Abstract

Intestinal microbiota members of the genus are increasingly explored as probiotics and therapeutics. However, the paucity of genetic tools and the widespread restriction modification (RM) systems in limit our ability to genetically manipulate these bacteria. Here we established a CRISPR-Cas9 cytosine base editor system (cBEST) for portable genome editing in bifidobacteria. Harboring different promoters characterized in this study, these cBEST plasmids showed a range of editing efficiencies in different strains and genomic contexts, highlighting the importance of fine-tuning base editor and sgRNA expression. Additionally, we showed that disruption or bypass of RM systems dramatically improved editing efficiencies in otherwise hard-to-edit genomic loci and strains. Notably, we demonstrated the use of RM-disrupted strains for simultaneous assembly, amplification, and methylation of the all-in-one editing plasmids, greatly streamlining the workflow for high-efficiency base editing. Last but not least, we showed the portability of cBESTs using the same editing construct to disrupt a conserved metabolic gene in multiple species. Looking ahead, the ability to efficiently edit and engineer bifidobacterial genomes will give rise to new opportunities for research and applications toward improving human health.IMPORTANCEThe ability to genetically manipulate specific genes and biological pathways in is essential to unlocking their probiotic and therapeutic potential in human health applications. The DNA double-strand break-free CRISPR-Cas9 cytosine base editor system established in this work allows portable and efficient base editing in spp. We further showed that bypass of restriction modification systems significantly improved base editing efficiency, especially for hard-to-edit genomic loci and strains. This expanded genome editing toolbox should facilitate mechanistic investigations into the roles of in host physiology and disease.

摘要

该属的肠道微生物群成员越来越多地被作为益生菌和治疗剂进行研究。然而,遗传工具的匮乏以及该属中广泛存在的限制修饰(RM)系统限制了我们对这些细菌进行基因操作的能力。在此,我们建立了一种用于双歧杆菌便携式基因组编辑的CRISPR-Cas9胞嘧啶碱基编辑器系统(cBEST)。这些cBEST质粒带有本研究中表征的不同启动子,在不同菌株和基因组背景下表现出一系列编辑效率,突出了微调碱基编辑器和sgRNA表达的重要性。此外,我们表明破坏或绕过RM系统可显著提高在其他情况下难以编辑的基因组位点和菌株中的编辑效率。值得注意的是,我们展示了使用RM破坏的菌株进行一体化编辑质粒的同时组装、扩增和甲基化,极大地简化了高效碱基编辑的工作流程。最后但同样重要的是,我们展示了使用相同的编辑构建体破坏多个双歧杆菌物种中保守代谢基因的cBEST的可移植性。展望未来,高效编辑和改造双歧杆菌基因组的能力将为改善人类健康的研究和应用带来新机遇。

重要性

在双歧杆菌中对特定基因和生物途径进行基因操作的能力对于释放其在人类健康应用中的益生菌和治疗潜力至关重要。本研究建立的无DNA双链断裂的CRISPR-Cas9胞嘧啶碱基编辑器系统允许在双歧杆菌属物种中进行便携式和高效的碱基编辑。我们进一步表明,绕过限制修饰系统可显著提高碱基编辑效率,特别是对于难以编辑的基因组位点和菌株。这个扩展的双歧杆菌基因组编辑工具箱应有助于对双歧杆菌在宿主生理学和疾病中的作用进行机制研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9d/12016496/9ea1379e42b6/aem.01985-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验