Suppr超能文献

估算临床试验中干预变量的基线值。

Estimating baseline values of the variable of intervention in a clinical trial.

作者信息

Knoke J D, Hawkins D L

出版信息

Control Clin Trials. 1985 Jun;6(2):136-45. doi: 10.1016/0197-2456(85)90119-9.

Abstract

Parametric empirical Bayes methodology is suggested for determining estimators of individual baseline values of the variable of intervention in a clinical trial, when the variable is measured twice--once for subject selection, and again, without selection, just before randomization. The resulting compromise estimator is seen to have more precision than the baseline estimator employing only the second value and less bias than the estimator that simply averages the two values. Construction of such an estimator is illustrated using data from the recruitment phase of the Lipid Research Clinics Coronary Primary Prevention Trial. Generalizations to other designs are also suggested. In all cases, however, an estimate of the intraindividual variance of the variable of intervention is required.

摘要

当临床试验中干预变量测量两次时,建议采用参数经验贝叶斯方法来确定该变量个体基线值的估计量,其中一次测量用于受试者选择,另一次在随机分组前进行,且不考虑选择因素。结果表明,由此得到的折衷估计量比仅使用第二个值的基线估计量具有更高的精度,并且比简单平均两个值的估计量具有更小的偏差。利用脂质研究临床中心冠心病一级预防试验招募阶段的数据说明了这种估计量的构建方法。同时也提出了对其他设计的推广方法。然而,在所有情况下,都需要估计干预变量的个体内方差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验