Knoke J D, Hawkins D L
Control Clin Trials. 1985 Jun;6(2):136-45. doi: 10.1016/0197-2456(85)90119-9.
Parametric empirical Bayes methodology is suggested for determining estimators of individual baseline values of the variable of intervention in a clinical trial, when the variable is measured twice--once for subject selection, and again, without selection, just before randomization. The resulting compromise estimator is seen to have more precision than the baseline estimator employing only the second value and less bias than the estimator that simply averages the two values. Construction of such an estimator is illustrated using data from the recruitment phase of the Lipid Research Clinics Coronary Primary Prevention Trial. Generalizations to other designs are also suggested. In all cases, however, an estimate of the intraindividual variance of the variable of intervention is required.
当临床试验中干预变量测量两次时,建议采用参数经验贝叶斯方法来确定该变量个体基线值的估计量,其中一次测量用于受试者选择,另一次在随机分组前进行,且不考虑选择因素。结果表明,由此得到的折衷估计量比仅使用第二个值的基线估计量具有更高的精度,并且比简单平均两个值的估计量具有更小的偏差。利用脂质研究临床中心冠心病一级预防试验招募阶段的数据说明了这种估计量的构建方法。同时也提出了对其他设计的推广方法。然而,在所有情况下,都需要估计干预变量的个体内方差。