Suppr超能文献

利用病史对全国参保女性胎儿生长受限和小于胎龄儿进行广泛可用的预后评估。

Widely accessible prognostication using medical history for fetal growth restriction and small for gestational age in nationwide insured women.

作者信息

Sufriyana Herdiantri, Amani Fariska Zata, Al Hajiri Aufar Zimamuz Zaman, Wu Yu-Wei, Su Emily Chia-Yu

机构信息

Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, 155 Section 2 Linong Street, Taipei, 112304, Taiwan.

Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.

出版信息

Sci Rep. 2025 Mar 11;15(1):8340. doi: 10.1038/s41598-025-92986-7.

Abstract

Prevention of fetal growth restriction/small for gestational age (FGR/SGA) is adequate if screening is accurate. Ultrasound and biomarkers can achieve this goal; however, both are often inaccessible. This study aimed to develop, validate, and deploy a prognostic prediction model for screening FGR/SGA using only medical history. From a nationwide health insurance database (n = 1,697,452), we retrospectively selected visits to 22,024 healthcare providers of primary, secondary, and tertiary care. This study used machine learning (including deep learning) to develop prediction models using 54 medical-history predictors. After evaluating model calibration, clinical utility, and explainability, we selected the best by discrimination ability. We also externally validated the models using geographical and temporal splits of ~ 20% of the selected visits. The models were also compared with those from previous studies, which were rigorously selected by a systematic review of Pubmed, Scopus, and Web of Science. We selected 169,746 subjects with 507,319 visits for predictive modeling from the database, which were 12-to-55-year-old female insurance holders who used the healthcare services. The best prediction model was a deep-insight visible neural network. It had an area under the receiver operating characteristics curve of 0.742 (95% confidence interval 0.734 to 0.750) and a sensitivity of 49.09% (95% confidence interval 47.60-50.58% using a threshold with 95% specificity). The model was competitive against the previous models of 30 eligible studies of 381 records, including those using either ultrasound or biomarker measurements. We deployed a web application to apply the model. Our model used only medical history to improve accessibility for FGR/SGA screening. However, future studies are warranted to evaluate if this model's usage impacts patient outcomes.

摘要

如果筛查准确,预防胎儿生长受限/小于胎龄儿(FGR/SGA)就是充分的。超声检查和生物标志物可以实现这一目标;然而,这两者往往难以获得。本研究旨在开发、验证并应用一种仅使用病史来筛查FGR/SGA的预后预测模型。我们从一个全国性的健康保险数据库(n = 1,697,452)中,回顾性地选取了对22,024名初级、二级和三级医疗保健提供者的就诊记录。本研究使用机器学习(包括深度学习),利用54个病史预测因子来开发预测模型。在评估模型校准、临床实用性和可解释性后,我们根据鉴别能力选出了最佳模型。我们还使用所选就诊记录中约20%的地理和时间分割对模型进行了外部验证。这些模型还与之前研究中的模型进行了比较,那些模型是通过对PubMed、Scopus和Web of Science进行系统综述严格挑选出来的。我们从数据库中选取了169,746名受试者的507,319次就诊记录用于预测建模,这些受试者是使用医疗服务的12至55岁女性保险持有人。最佳预测模型是一个深度洞察可见神经网络。其受试者操作特征曲线下面积为0.742(95%置信区间为0.734至0.750),敏感性为49.09%(使用具有95%特异性的阈值时,95%置信区间为47.60 - 50.58%)。该模型与之前30项符合条件的研究中381条记录的模型具有竞争力,包括那些使用超声或生物标志物测量的模型。我们部署了一个网络应用程序来应用该模型。我们的模型仅使用病史来提高FGR/SGA筛查的可及性。然而,未来有必要进行研究以评估该模型的使用是否会影响患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed5/11894118/3df41aef2344/41598_2025_92986_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验