Suppr超能文献

基于机器学习表型分析的跨祖先罕见变异关联研究在代谢功能障碍相关脂肪性肝病中的应用

Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease.

作者信息

Chen Robert, Petrazzini Ben Omega, Duffy Áine, Rocheleau Ghislain, Jordan Daniel, Bansal Meena, Do Ron

机构信息

The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Genome Biol. 2025 Mar 10;26(1):50. doi: 10.1186/s13059-025-03518-5.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and small sample sizes. We test associations of rare and ultra-rare coding variants with proton density fat fraction (PDFF) and MASLD case-control status in 736,010 participants of diverse ancestries from the UK Biobank, All of Us, and BioMe and performed a trans-ancestral meta-analysis. We then developed models to accurately predict PDFF and MASLD status in the UK Biobank and tested associations with these predicted phenotypes to increase statistical power.

RESULTS

The trans-ancestral meta-analysis with PDFF and MASLD case-control status identifies two single variants and two gene-level associations in APOB, CDH5, MYCBP2, and XAB2. Association testing with predicted phenotypes, which replicates more known genetic variants from GWAS than true phenotypes, identifies 16 single variants and 11 gene-level associations implicating 23 additional genes. Two variants were polymorphic only among African ancestry participants and several associations showed significant heterogeneity in ancestry and sex-stratified analyses. In total, we identified 27 genes, of which 3 are monogenic causes of steatosis (APOB, G6PC1, PPARG), 4 were previously associated with MASLD (APOB, APOC3, INSR, PPARG), and 23 had supporting clinical, experimental, and/or genetic evidence.

CONCLUSIONS

Our results suggest that trans-ancestral association analyses can identify ancestry-specific rare and ultra-rare coding variants in MASLD pathogenesis. Furthermore, we demonstrate the utility of machine learning in genetic investigations of difficult-to-phenotype diseases in trans-ancestral biobanks.

摘要

背景

全基因组关联研究(GWAS)已确定了与代谢功能障碍相关脂肪性肝病(MASLD)相关的常见变异。然而,罕见编码变异研究受到表型分析挑战和样本量小的限制。我们在来自英国生物银行、“我们所有人”计划和BioMe的736,010名不同血统参与者中测试了罕见和超罕见编码变异与质子密度脂肪分数(PDFF)及MASLD病例对照状态之间的关联,并进行了跨祖先荟萃分析。然后,我们开发了模型来准确预测英国生物银行中的PDFF和MASLD状态,并测试与这些预测表型的关联以提高统计效力。

结果

对PDFF和MASLD病例对照状态进行的跨祖先荟萃分析在载脂蛋白B(APOB)、钙黏蛋白5(CDH5)、含MYC结合蛋白2(MYCBP2)和XAB盒蛋白2(XAB2)中确定了两个单变异以及两个基因水平的关联。与预测表型的关联测试识别出16个单变异和11个基因水平的关联,涉及另外23个基因,该测试比真实表型复制了更多来自GWAS的已知遗传变异。两个变异仅在非洲血统参与者中具有多态性,并且在血统和性别分层分析中,几个关联显示出显著的异质性。我们总共确定了27个基因,其中3个是脂肪变性的单基因病因(APOB、葡萄糖-6-磷酸酶催化亚基1(G6PC1)、过氧化物酶体增殖物激活受体γ(PPARG));4个先前与MASLD相关(APOB、载脂蛋白C3(APOC3)、胰岛素受体(INSR)、PPARG);还有23个具有支持性的临床、实验和/或遗传证据。

结论

我们的结果表明,跨祖先关联分析可以识别MASLD发病机制中特定血统的罕见和超罕见编码变异。此外,我们证明了机器学习在跨祖先生物银行中对难以进行表型分析的疾病的遗传研究中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cbf/11892324/82053ed44610/13059_2025_3518_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验