Suppr超能文献

DWTFormer:一种用于番茄叶部病害识别的频率-空间特征融合模型。

DWTFormer: a frequency-spatial features fusion model for tomato leaf disease identification.

作者信息

Xiang Yuyun, Gao Shuang, Li Xiaopeng, Li Shuqin

机构信息

College of Information Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Center of Big Data, Data Bureau, Yichang, 44300, Hubei, China.

出版信息

Plant Methods. 2025 Mar 11;21(1):33. doi: 10.1186/s13007-025-01349-w.

Abstract

Remarkable inter-class similarity and intra-class variability of tomato leaf diseases seriously affect the accuracy of identification models. A novel tomato leaf disease identification model, DWTFormer, based on frequency-spatial feature fusion, was proposed to address this issue. Firstly, a Bneck-DSM module was designed to extract shallow features, laying the groundwork for deep feature extraction. Then, a dual-branch feature mapping network (DFMM) was proposed to extract multi-scale disease features from frequency and spatial domain information. In the frequency branch, a 2D discrete wavelet transform feature decomposition module effectively captured the rich frequency information in the disease image, compensating for spatial domain information. In the spatial branch, a multi-scale convolution and PVT (Pyramid Vision Transformer)-based module was developed to extract the global and local spatial features, enabling comprehensive spatial representation. Finally, a dual-domain features fusion model based on dynamic cross-attention was proposed to fuse the frequency-spatial features. Experimental results on the tomato leaf disease dataset demonstrated that DWTFormer achieved 99.28% identification accuracy, outperforming most existing mainstream models. Furthermore, 96.18% and 99.89% identification accuracies have been obtained on the AI Challenger 2018 and PlantVillage datasets. In-field experiments demonstrated that DWTFormer achieved an identification accuracy of 97.22% and an average inference time of 0.028 seconds in real plant environments. This work has effectively reduced the impact of inter-class similarity and intra-class variability on tomato leaf disease identification. It provides a scalable model reference for fast and accurate disease identification.

摘要

番茄叶部病害显著的类间相似性和类内变异性严重影响识别模型的准确性。为解决这一问题,提出了一种基于频率-空间特征融合的新型番茄叶部病害识别模型DWTFormer。首先,设计了一个Bneck-DSM模块来提取浅层特征,为深度特征提取奠定基础。然后,提出了一种双分支特征映射网络(DFMM),从频率和空间域信息中提取多尺度病害特征。在频率分支中,一个二维离散小波变换特征分解模块有效地捕捉了病害图像中丰富的频率信息,弥补了空间域信息。在空间分支中,开发了一个基于多尺度卷积和PVT(金字塔视觉Transformer)的模块来提取全局和局部空间特征,实现全面的空间表征。最后,提出了一种基于动态交叉注意力的双域特征融合模型,用于融合频率-空间特征。在番茄叶部病害数据集上的实验结果表明,DWTFormer的识别准确率达到99.28%,优于大多数现有的主流模型。此外,在AI Challenger 2018和PlantVillage数据集上分别获得了96.18%和99.89%的识别准确率。田间实验表明,DWTFormer在实际植物环境中的识别准确率达到97.22%,平均推理时间为0.028秒。这项工作有效地降低了类间相似性和类内变异性对番茄叶部病害识别的影响。它为快速准确的病害识别提供了一个可扩展的模型参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/545d/11895358/b242dadab9d1/13007_2025_1349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验