Suppr超能文献

一种基于图像的使用MC-UNet的番茄叶病分割有效方法。

An Effective Image-Based Tomato Leaf Disease Segmentation Method Using MC-UNet.

作者信息

Deng Yubao, Xi Haoran, Zhou Guoxiong, Chen Aibin, Wang Yanfeng, Li Liujun, Hu Yahui

机构信息

College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.

College of Mechanical & Electrical Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.

出版信息

Plant Phenomics. 2023 May 15;5:0049. doi: 10.34133/plantphenomics.0049. eCollection 2023.

Abstract

Tomato disease control is an urgent requirement in the field of intellectual agriculture, and one of the keys to it is quantitative identification and precise segmentation of tomato leaf diseases. Some diseased areas on tomato leaves are tiny and may go unnoticed during segmentation. Blurred edge also makes the segmentation accuracy poor. Based on UNet, we propose an effective image-based tomato leaf disease segmentation method called Cross-layer Attention Fusion Mechanism combined with Multi-scale Convolution Module (MC-UNet). First, a Multi-scale Convolution Module is proposed. This module obtains multiscale information about tomato disease by employing 3 convolution kernels of different sizes, and it highlights the edge feature information of tomato disease using the Squeeze-and-Excitation Module. Second, a Cross-layer Attention Fusion Mechanism is proposed. This mechanism highlights tomato leaf disease locations via gating structure and fusion operation. Then, we employ SoftPool rather than MaxPool to retain valid information on tomato leaves. Finally, we use the SeLU function appropriately to avoid network neuron dropout. We compared MC-UNet to the existing segmentation network on our self-built tomato leaf disease segmentation dataset and MC-UNet achieved 91.32% accuracy and 6.67M parameters. Our method achieves good results for tomato leaf disease segmentation, which demonstrates the effectiveness of the proposed methods.

摘要

番茄病害防治是智慧农业领域的迫切需求,而其中的关键之一是番茄叶部病害的定量识别和精准分割。番茄叶片上的一些病害区域很小,在分割过程中可能会被忽视。边缘模糊也使得分割精度较差。基于UNet,我们提出了一种有效的基于图像的番茄叶部病害分割方法,称为跨层注意力融合机制结合多尺度卷积模块(MC-UNet)。首先,提出了一种多尺度卷积模块。该模块通过使用3个不同大小的卷积核来获取番茄病害的多尺度信息,并利用挤压激励模块突出番茄病害的边缘特征信息。其次,提出了一种跨层注意力融合机制。该机制通过门控结构和融合操作突出番茄叶部病害位置。然后,我们采用SoftPool而不是MaxPool来保留番茄叶片上的有效信息。最后,我们适当地使用SeLU函数来避免网络神经元失活。我们在自建的番茄叶部病害分割数据集上将MC-UNet与现有的分割网络进行了比较,MC-UNet的准确率达到了91.32%,参数为667万个。我们的方法在番茄叶部病害分割方面取得了良好的效果,证明了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebe/10204749/bb0281de9ab7/plantphenomics.0049.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验