Suppr超能文献

自然言语的神经追踪:中风后失语症的有效标志物。

Neural tracking of natural speech: an effective marker for post-stroke aphasia.

作者信息

De Clercq Pieter, Kries Jill, Mehraram Ramtin, Vanthornhout Jonas, Francart Tom, Vandermosten Maaike

机构信息

Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.

出版信息

Brain Commun. 2025 Mar 10;7(2):fcaf095. doi: 10.1093/braincomms/fcaf095. eCollection 2025.

Abstract

After a stroke, approximately one-third of patients suffer from aphasia, a language disorder that impairs communication ability. Behavioural tests are the current standard to detect aphasia, but they are time-consuming, have limited ecological validity and require active patient cooperation. To address these limitations, we tested the potential of EEG-based neural envelope tracking of natural speech. The technique investigates the neural response to the temporal envelope of speech, which is critical for speech understanding by encompassing cues for detecting and segmenting linguistic units (e.g. phrases, words and phonemes). We recorded EEG from 26 individuals with aphasia in the chronic phase after stroke (>6 months post-stroke) and 22 healthy controls while they listened to a 25-min story. We quantified neural envelope tracking in a broadband frequency range as well as in the delta, theta, alpha, beta and gamma frequency bands using mutual information analyses. Besides group differences in neural tracking measures, we also tested its suitability for detecting aphasia at the individual level using a support vector machine classifier. We further investigated the reliability of neural envelope tracking and the required recording length for accurate aphasia detection. Our results showed that individuals with aphasia had decreased encoding of the envelope compared to controls in the broad, delta, theta and gamma bands, which aligns with the assumed role of these bands in auditory and linguistic processing of speech. Neural tracking in these frequency bands effectively captured aphasia at the individual level, with a classification accuracy of 83.33% and an area under the curve of 89.16%. Moreover, we demonstrated that high-accuracy detection of aphasia can be achieved in a time-efficient (5-7 min) and highly reliable manner (split-half reliability correlations between = 0.61 and = 0.96 across frequency bands). In this study, we identified specific neural response characteristics to natural speech that are impaired in individuals with aphasia, holding promise as a potential biomarker for the condition. Furthermore, we demonstrate that the neural tracking technique can discriminate aphasia from healthy controls at the individual level with high accuracy, and in a reliable and time-efficient manner. Our findings represent a significant advance towards more automated, objective and ecologically valid assessments of language impairments in aphasia.

摘要

中风后,约三分之一的患者会患上失语症,这是一种损害沟通能力的语言障碍。行为测试是目前检测失语症的标准方法,但它们耗时、生态效度有限且需要患者积极配合。为了克服这些局限性,我们测试了基于脑电图(EEG)的自然语音神经包络跟踪的潜力。该技术研究对语音时间包络的神经反应,这对于语音理解至关重要,因为它包含检测和分割语言单元(如短语、单词和音素)的线索。我们在26名中风后慢性期(中风后>6个月)的失语症患者和22名健康对照者听25分钟故事时记录了他们的脑电图。我们使用互信息分析在宽带频率范围以及δ、θ、α、β和γ频段量化神经包络跟踪。除了神经跟踪测量中的组间差异外,我们还使用支持向量机分类器测试了其在个体水平上检测失语症的适用性。我们进一步研究了神经包络跟踪的可靠性以及准确检测失语症所需的记录长度。我们的结果表明,与对照组相比,失语症患者在宽带、δ、θ和γ频段对包络的编码减少,这与这些频段在语音听觉和语言处理中的假定作用一致。这些频段的神经跟踪在个体水平上有效地捕捉到了失语症,分类准确率为83.33%,曲线下面积为89.16%。此外,我们证明了可以以高效(5 - 7分钟)和高度可靠的方式(跨频段的折半信度相关性在0.61至0.96之间)实现失语症的高精度检测。在这项研究中,我们确定了失语症患者对自然语音受损的特定神经反应特征,有望作为该病症的潜在生物标志物。此外,我们证明神经跟踪技术可以在个体水平上以高精度、可靠且高效的方式区分失语症患者与健康对照者。我们的研究结果朝着更自动化、客观和具有生态效度的失语症语言障碍评估迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e13/11891514/1d11d0d52b07/fcaf095_ga.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验