Mesik Juraj, Wojtczak Magdalena
Department of Psychology, University of Minnesota, Minneapolis, MN, United States.
Front Neurosci. 2023 Jan 12;16:963629. doi: 10.3389/fnins.2022.963629. eCollection 2022.
In recent years, temporal response function (TRF) analyses of neural activity recordings evoked by continuous naturalistic stimuli have become increasingly popular for characterizing response properties within the auditory hierarchy. However, despite this rise in TRF usage, relatively few educational resources for these tools exist. Here we use a dual-talker continuous speech paradigm to demonstrate how a key parameter of experimental design, the quantity of acquired data, influences TRF analyses fit to either individual data (subject-specific analyses), or group data (generic analyses). We show that although model prediction accuracy increases monotonically with data quantity, the amount of data required to achieve significant prediction accuracies can vary substantially based on whether the fitted model contains densely (e.g., acoustic envelope) or sparsely (e.g., lexical surprisal) spaced features, especially when the goal of the analyses is to capture the aspect of neural responses uniquely explained by specific features. Moreover, we demonstrate that generic models can exhibit high performance on small amounts of test data (2-8 min), if they are trained on a sufficiently large data set. As such, they may be particularly useful for clinical and multi-task study designs with limited recording time. Finally, we show that the regularization procedure used in fitting TRF models can interact with the quantity of data used to fit the models, with larger training quantities resulting in systematically larger TRF amplitudes. Together, demonstrations in this work should aid new users of TRF analyses, and in combination with other tools, such as piloting and power analyses, may serve as a detailed reference for choosing acquisition duration in future studies.
近年来,对由连续自然刺激诱发的神经活动记录进行时间响应函数(TRF)分析,在表征听觉层级内的响应特性方面越来越受欢迎。然而,尽管TRF的使用有所增加,但针对这些工具的教育资源却相对较少。在这里,我们使用双说话者连续语音范式来演示实验设计的一个关键参数——采集数据的数量,如何影响适合个体数据(特定受试者分析)或群体数据(通用分析)的TRF分析。我们表明,尽管模型预测准确性随数据量单调增加,但根据拟合模型包含的是密集(例如,声学包络)还是稀疏(例如,词汇意外性)间隔特征,实现显著预测准确性所需的数据量可能会有很大差异,特别是当分析的目标是捕捉特定特征唯一解释的神经反应方面时。此外,我们证明,如果通用模型在足够大的数据集上进行训练,那么它们在少量测试数据(2 - 8分钟)上也能表现出高性能。因此,它们对于记录时间有限的临床和多任务研究设计可能特别有用。最后,我们表明,拟合TRF模型时使用的正则化过程会与用于拟合模型的数据量相互作用,训练量越大,TRF幅度系统性地越大。这项工作中的演示应该有助于TRF分析的新用户,并且与其他工具(如试点和功效分析)相结合,可能为未来研究中选择采集持续时间提供详细参考。