Suppr超能文献

机器学习在预测药物透过血脑屏障通透性中的应用

The Application of Machine Learning in Predicting the Permeability of Drugs Across the Blood Brain Barrier.

作者信息

Jafarpour Sogand, Asefzadeh Maryam, Aboutaleb Ehsan

机构信息

School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.

Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.

出版信息

Iran J Pharm Res. 2024 Nov 24;23(1):e149367. doi: 10.5812/ijpr-149367. eCollection 2024 Jan-Dec.

Abstract

The inefficiency of some medications to cross the blood-brain barrier (BBB) is often attributed to their poor physicochemical or pharmacokinetic properties. Recent studies have demonstrated promising outcomes using machine learning algorithms to predict drug permeability across the BBB. In light of these findings, our study was conducted to explore the potential of machine learning in predicting the permeability of drugs across the BBB. We utilized the B3DB dataset, a comprehensive BBB permeability molecular database, to build machine learning models. The dataset comprises 7,807 molecules, including information on their permeability, stereochemistry, and physicochemical properties. After preprocessing and cleaning, various machine learning algorithms were implemented using the Python library Pycaret to predict permeability. The extra trees classifier model outperformed others when using Morgan fingerprints and Mordred chemical descriptors (MCDs), achieving an area under the curve (AUC) of 0.93 and 0.95 on the test dataset. Additionally, we conducted an experiment to train a voting classifier combining the top three performing models. The best-blended model, trained on MCDs, achieved an AUC of 0.96. Furthermore, Shapley additive exPlanations (SHAP) analysis was applied to our best-performing single model, the extra trees classifier trained on MCDs, identifying the Lipinski rule of five as the most significant feature in predicting BBB permeability. In conclusion, our combined model trained on MCDs achieved an AUC of 0.96, an F1 Score of 0.91, and an MCC of 0.74. These results are consistent with prior studies on CNS drug permeability, highlighting the potential of machine learning in this domain.

摘要

某些药物难以穿过血脑屏障(BBB),这通常归因于其不良的物理化学或药代动力学性质。最近的研究表明,使用机器学习算法预测药物穿过血脑屏障的渗透性取得了令人鼓舞的成果。鉴于这些发现,我们开展了这项研究,以探索机器学习在预测药物穿过血脑屏障渗透性方面的潜力。我们利用B3DB数据集(一个全面的血脑屏障渗透性分子数据库)构建机器学习模型。该数据集包含7807个分子,包括它们的渗透性、立体化学和物理化学性质等信息。经过预处理和清理后,使用Python库Pycaret实施了各种机器学习算法来预测渗透性。当使用摩根指纹和莫德雷德化学描述符(MCD)时,额外树分类器模型的表现优于其他模型,在测试数据集上的曲线下面积(AUC)达到0.93和0.95。此外,我们进行了一项实验,训练一个结合表现最佳的三个模型的投票分类器。在MCD上训练的最佳混合模型的AUC达到0.96。此外,我们将夏普利值附加解释(SHAP)分析应用于我们表现最佳的单一模型,即在MCD上训练的额外树分类器,确定了“五规则”(Lipinski rule of five)是预测血脑屏障渗透性的最显著特征。总之,我们在MCD上训练的组合模型的AUC为0.96,F1分数为0.91,马修斯相关系数(MCC)为0.74。这些结果与先前关于中枢神经系统药物渗透性的研究一致,突出了机器学习在该领域的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60c/11892787/53973047184b/ijpr-23-1-149367-i001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验