Su Yifan, Guo Xue, Gao Yamei, Feng Jiajie, Wu Linwei, Lei Jiesi, Liu Suo, Gao Qun, Zeng Yufei, Qin Wei, Shi Zheng, Liang Zhengxiong, Ye Zhencheng, Yuan Mengting, Ning Daliang, Wu Liyou, Zhou Jizhong, Yang Yunfeng
Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518071, Shenzhen, China.
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China.
ISME Commun. 2025 Mar 3;5(1):ycae152. doi: 10.1093/ismeco/ycae152. eCollection 2025 Jan.
Cellulose is the most abundant component of plant litter, which is critical for terrestrial carbon cycling. Nonetheless, it remains unknown how global warming affects cellulose-decomposing microorganisms. Here, we carried out a 3-year litterbag experiment to examine cellulose decomposition undergoing +3°C warming in a tallgrass prairie. Most cellulose-associated bacteria and fungi in litterbags were also detected in bulk soil, and bacteria in litterbags had higher community-level copy numbers, larger genome sizes, and higher genome guanine-cytosine (GC) contents than those in bulk soil, implying higher growth rates. Warming stimulated soil respiration by 32.3% and accelerated mass loss of cellulose, concurring with the increase in relative abundances of most functional genes associated with carbon decomposition in litterbags. Incorporating cellulose-decomposing genes into an ecosystem model reduced model parameter uncertainty and showed that warming stimulated microbial biomass, activity, and soil carbon decomposition. Collectively, our study supports a trait-centric view since cellulose-decomposing genes or genomic traits are amenable for ecosystem modeling. By characterizing the phylogenetically diverse yet functionally similar cellulose-associated microorganisms and their responses to warming, we take a step toward more precise predictions of soil carbon dynamics under future climate scenarios.
纤维素是植物凋落物中最丰富的成分,对陆地碳循环至关重要。尽管如此,全球变暖如何影响纤维素分解微生物仍不清楚。在此,我们进行了一项为期3年的凋落物袋实验,以研究高草草原中在升温3°C的情况下纤维素的分解情况。凋落物袋中大多数与纤维素相关的细菌和真菌在原状土壤中也能检测到,并且凋落物袋中的细菌比原状土壤中的细菌具有更高的群落水平拷贝数、更大的基因组大小和更高的基因组鸟嘌呤-胞嘧啶(GC)含量,这意味着更高的生长速率。升温使土壤呼吸增加了32.3%,并加速了纤维素的质量损失,这与凋落物袋中大多数与碳分解相关的功能基因相对丰度的增加相一致。将纤维素分解基因纳入生态系统模型降低了模型参数的不确定性,并表明升温刺激了微生物生物量、活性和土壤碳分解。总体而言,我们的研究支持以性状为中心的观点,因为纤维素分解基因或基因组性状适用于生态系统建模。通过表征系统发育多样但功能相似的纤维素相关微生物及其对升温的响应,我们朝着更精确预测未来气候情景下的土壤碳动态迈出了一步。