Suppr超能文献

土壤碳库和微生物功能对亚热带淡水湿地实验增温的遗传连锁。

Genetic linkage of soil carbon pools and microbial functions in subtropical freshwater wetlands in response to experimental warming.

机构信息

College of Environmental and Resource Science, Research Center of Water and Watershed Sustainability, Zhejiang University, Hangzhou, China.

出版信息

Appl Environ Microbiol. 2012 Nov;78(21):7652-61. doi: 10.1128/AEM.01602-12. Epub 2012 Aug 24.

Abstract

Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands.

摘要

未来气候温度的升高预计将加速土壤有机质的微生物分解。本野外微宇宙实验旨在研究土壤变暖对淡水湿地不同有机碳(C)库及相关微生物功能响应的影响。GeoChip 4.0 是一种功能基因微阵列,用于确定微生物基因多样性和 C 降解的功能潜力。实验性增温显著增加了土壤孔隙水中溶解有机碳和磷(P)的浓度,从而提高了 C 排放和 P 输出的潜力。土壤中储存的总有机碳的这种损失可以追溯到难分解有机碳的分解。增温优先刺激降解难分解 C 的基因,而不是易分解 C 的基因。对于分别编码纤维素和木质素降解的纤维二糖酶和 mnp 的基因来说,情况尤其如此。我们通过增温增强的多酚氧化酶和过氧化物酶活性来证实这一点,这些活性可用于获取难分解 C,并且难分解 C 的利用效率比易分解 C 的利用效率增加得更多(分别为平均百分比增加 48%和 28%)。增温条件下木质素降解基因的相对丰度增加了 15%;与此同时,作为木质素主要分解者的土壤真菌的丰度增加了 27%。这项工作表明,未来的变暖可能会增强真菌对木质素类化合物的分解潜力,导致微生物介导的 C 损失比以前在淡水湿地中估计的更大。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验