Suppr超能文献

基于经颅超声和近红外光谱的急性卒中成像在静脉溶栓治疗决策中的潜力。

Potential of transcranial ultrasound- and near-infrared spectroscopy-based acute stroke imaging for decision-making on intravenous thrombolysis treatment.

作者信息

Freitag Erik, Erdur Hebun, Khalil Ahmed A, Harmel Peter, Kaffes Maximilian, Schmitz Christoph H, Weber Joachim E, Audebert Heinrich J

机构信息

Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Front Neurol. 2025 Feb 24;16:1499821. doi: 10.3389/fneur.2025.1499821. eCollection 2025.

Abstract

BACKGROUND

Mobile Stroke Units (MSU) shorten time to intravenous thrombolysis (IVT) and improve functional outcome, but they rely on computed tomography (CT) making them highly specialized and costly. Alternative technologies can potentially identify imaging-based IVT contraindications like intracranial hemorrhage (ICH) or malignancies (IM), e.g., by transcranial color-coded sonography (TCCS) and near-infrared spectroscopy (NIRS).

METHODS

Using a simulation approach, we analyzed magnetic resonance imaging (MRI) scans of stroke-suspected patients within 4.5 h of symptom onset to assess TCCS and NIRS for identifying imaging-based IVT contraindications. Our study included both primary and sensitivity analyses, each employing conservative and optimistic scenarios. The primary analysis integrated clinical information from the emergency department, while the sensitivity analysis evaluated overall performance across all patients, regardless of clinical information. The conservative scenario defined TCCS detecting acute deep-brain hemorrhages or tumors >20 mm from scalp surface or > 10 mL in volume or causing >4 mm midline-shift, while NIRS was defined detecting them <20 mm from scalp surface with a volume > 3.5 mL. The optimistic scenario defined TCCS detecting intracranial or subarachnoid acute/subacute hematoma or tumors >20 mm from scalp surface or > 5 mL in volume or causing >2 mm midline-shift, while NIRS was defined detecting them <35 mm from the scalp surface with volume > 3.5 mL.

RESULTS

We assessed 1,089 consecutive patients undergoing acute MRI, identifying 69 with imaging-based IVT contraindications, of which 40 had additional non-imaging contraindications. In the primary analysis, among those 29 patients without non-imaging-based contraindications, TCCS/NIRS would have detected 15 of 25 ICH and 3 of 4 malignant tumors in the conservative scenario. In the optimistic scenario, 18 of 25 ICH and all malignant tumors would have been detected. In the sensitivity analyses, the conservative scenario would have detected 30 of 52 ICH and 8 of 17 malignant tumors, while the optimistic scenario would have identified 37 of 52 ICH and 12 of 17 malignant tumors.

CONCLUSION

While TCCS and NIRS technologies exhibit potential for identifying IVT contraindications in pre-hospital settings, comprehensive evaluation in real-world scenarios is imperative to ascertain their operational constraints.

摘要

背景

移动卒中单元(MSU)缩短了静脉溶栓(IVT)时间并改善了功能结局,但它们依赖计算机断层扫描(CT),这使得它们专业性强且成本高昂。替代技术可能能够识别基于影像学的IVT禁忌证,如颅内出血(ICH)或恶性肿瘤(IM),例如通过经颅彩色编码超声(TCCS)和近红外光谱(NIRS)。

方法

我们采用模拟方法,分析了症状发作4.5小时内疑似卒中患者的磁共振成像(MRI)扫描,以评估TCCS和NIRS识别基于影像学的IVT禁忌证的能力。我们的研究包括主要分析和敏感性分析,每种分析都采用保守和乐观的情景。主要分析整合了急诊科的临床信息,而敏感性分析评估了所有患者的总体表现,无论临床信息如何。保守情景定义为TCCS检测到距头皮表面>20mm或体积>10mL或导致中线移位>4mm的急性脑深部出血或肿瘤,而NIRS定义为检测到距头皮表面<20mm且体积>3.5mL的此类情况。乐观情景定义为TCCS检测到距头皮表面>20mm或体积>5mL或导致中线移位>2mm的颅内或蛛网膜下腔急性/亚急性血肿或肿瘤,而NIRS定义为检测到距头皮表面<35mm且体积>3.5mL的此类情况。

结果

我们评估了1089例连续接受急性MRI检查的患者,确定了69例存在基于影像学的IVT禁忌证,其中40例还有其他非影像学禁忌证。在主要分析中,在那些29例无基于非影像学禁忌证的患者中,在保守情景下,TCCS/NIRS可检测到25例ICH中的15例和4例恶性肿瘤中的3例。在乐观情景下,可检测到25例ICH中的18例和所有恶性肿瘤。在敏感性分析中,保守情景可检测到52例ICH中的30例和17例恶性肿瘤中的8例,而乐观情景可识别52例ICH中的37例和17例恶性肿瘤中的12例。

结论

虽然TCCS和NIRS技术在院前环境中识别IVT禁忌证方面显示出潜力,但在现实场景中进行全面评估对于确定其操作限制至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cee7/11891060/021137f62b9b/fneur-16-1499821-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验