Suppr超能文献

通过产前心脏筛查,人工智能模型检测孕中期胎儿先天性心脏病的诊断准确性:一项系统评价和荟萃分析。

Diagnostic accuracy of artificial intelligence models in detecting congenital heart disease in the second-trimester fetus through prenatal cardiac screening: a systematic review and meta-analysis.

作者信息

Liastuti Lies Dina, Nursakina Yosilia

机构信息

Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.

Department of Cardiovascular, Harapan Kita National Heart Center, Jakarta, Indonesia.

出版信息

Front Cardiovasc Med. 2025 Feb 24;12:1473544. doi: 10.3389/fcvm.2025.1473544. eCollection 2025.

Abstract

BACKGROUND

Congenital heart disease (CHD) is a major contributor to morbidity and infant mortality and imposes the highest burden on global healthcare costs. Early diagnosis and prompt treatment of CHD contribute to enhanced neonatal outcomes and survival rates; however, there is a shortage of proficient examiners in remote regions. Artificial intelligence (AI)-powered ultrasound provides a potential solution to improve the diagnostic accuracy of fetal CHD screening.

METHODS

A literature search was conducted across seven databases for systematic review. Articles were retrieved based on PRISMA Flow 2020 and inclusion and exclusion criteria. Eligible diagnostic data were further meta-analyzed, and the risk of bias was tested using Quality Assessment of Diagnostic Accuracy Studies-Artificial Intelligence.

FINDINGS

A total of 374 studies were screened for eligibility, but only 9 studies were included. Most studies utilized deep learning models using either ultrasound or echocardiographic images. Overall, the AI models performed exceptionally well in accurately identifying normal and abnormal ultrasound images. A meta-analysis of these nine studies on CHD diagnosis resulted in a pooled sensitivity of 0.89 (0.81-0.94), a specificity of 0.91 (0.87-0.94), and an area under the curve of 0.952 using a random-effects model.

CONCLUSION

Although several limitations must be addressed before AI models can be implemented in clinical practice, AI has shown promising results in CHD diagnosis. Nevertheless, prospective studies with bigger datasets and more inclusive populations are needed to compare AI algorithms to conventional methods.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023461738, PROSPERO (CRD42023461738).

摘要

背景

先天性心脏病(CHD)是导致发病和婴儿死亡的主要原因,给全球医疗成本带来了最高负担。先天性心脏病的早期诊断和及时治疗有助于提高新生儿预后和存活率;然而,偏远地区缺乏熟练的检查人员。人工智能(AI)驱动的超声为提高胎儿先天性心脏病筛查的诊断准确性提供了一种潜在解决方案。

方法

在七个数据库中进行文献检索以进行系统评价。根据PRISMA流程2020以及纳入和排除标准检索文章。对符合条件的诊断数据进行进一步的荟萃分析,并使用诊断准确性研究质量评估-人工智能测试偏倚风险。

结果

共筛选出374项符合条件的研究,但仅纳入9项研究。大多数研究使用深度学习模型,利用超声或超声心动图图像。总体而言,人工智能模型在准确识别正常和异常超声图像方面表现出色。对这九项先天性心脏病诊断研究进行荟萃分析,采用随机效应模型得出合并敏感度为0.89(0.81 - 0.94),特异度为0.91(0.87 - 0.94),曲线下面积为0.952。

结论

尽管在人工智能模型能够应用于临床实践之前必须解决一些限制,但人工智能在先天性心脏病诊断方面已显示出有前景的结果。然而,需要有更大数据集和更具包容性人群的前瞻性研究,以将人工智能算法与传统方法进行比较。

系统评价注册

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023461738,PROSPERO(CRD42023461738)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b385/11891181/fb3b35f8013e/fcvm-12-1473544-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验