Suppr超能文献

机器学习在利用胎儿超声心动图筛查先天性心脏病中的应用。

Application of machine learning in screening for congenital heart diseases using fetal echocardiography.

作者信息

Truong Vien T, Nguyen Binh P, Nguyen-Vo Thanh-Hoang, Mazur Wojciech, Chung Eugene S, Palmer Cassady, Tretter Justin T, Alsaied Tarek, Pham Vy T, Do Huan Q, Do Phuong T N, Pham Vinh N, Ha Ban N, Chau Hoa N, Le Tuyen K

机构信息

The Christ Hospital Health Network, Cincinnati, OH, USA.

The Lindner Research Center, Cincinnati, OH, USA.

出版信息

Int J Cardiovasc Imaging. 2022 May;38(5):1007-1015. doi: 10.1007/s10554-022-02566-3. Epub 2022 Feb 22.

Abstract

There is a growing body of literature supporting the utilization of machine learning (ML) to improve diagnosis and prognosis tools of cardiovascular disease. The current study was to investigate the impact that the ML framework may have on the sensitivity of predicting the presence or absence of congenital heart disease (CHD) using fetal echocardiography. A comprehensive fetal echocardiogram including 2D cardiac chamber quantification, valvar assessments, assessment of great vessel morphology, and Doppler-derived blood flow interrogation was recorded. The postnatal echocardiogram was used to ascertain the diagnosis of CHD. A random forest (RF) algorithm with a nested tenfold cross-validation was used to train models for assessing the presence of CHD. The study population was derived from a database of 3910 singleton fetuses with maternal age of 28.8 ± 5.2 years and gestational age at the time of fetal echocardiography of 22.0 weeks (IQR 21-24). The proportion of CHD was 14.1% for the studied cohort confirmed by post-natal echocardiograms. Our proposed RF-based framework provided a sensitivity of 0.85, a specificity of 0.88, a positive predictive value of 0.55 and a negative predictive value of 0.97 to detect the CHD with the mean of mean ROC curves of 0.94 and the mean of mean PR curves of 0.84. Additionally, six first features, including cardiac axis, peak velocity of blood flow across the pulmonic valve, cardiothoracic ratio, pulmonary valvar annulus diameter, right ventricular end-diastolic diameter, and aortic valvar annulus diameter, are essential features that play crucial roles in adding more predictive values to the model in detecting patients with CHD. ML using RF can provide increased sensitivity in prenatal CHD screening with very good performance. The incorporation of ML algorithms into fetal echocardiography may further standardize the assessment for CHD.

摘要

越来越多的文献支持利用机器学习(ML)来改进心血管疾病的诊断和预后工具。当前的研究旨在调查ML框架对使用胎儿超声心动图预测先天性心脏病(CHD)是否存在的敏感性可能产生的影响。记录了一份全面的胎儿超声心动图,包括二维心脏腔室量化、瓣膜评估、大血管形态评估以及多普勒血流检测。产后超声心动图用于确定CHD的诊断。使用具有嵌套十重交叉验证的随机森林(RF)算法来训练评估CHD是否存在的模型。研究人群来自一个包含3910名单胎胎儿的数据库,母亲年龄为28.8±5.2岁,胎儿超声心动图检查时的孕周为22.0周(四分位间距21 - 24周)。经产后超声心动图证实,研究队列中CHD的比例为14.1%。我们提出的基于RF的框架在检测CHD时的敏感性为0.85,特异性为0.88,阳性预测值为0.55,阴性预测值为0.97,平均ROC曲线均值为0.94,平均PR曲线均值为0.84。此外,六个首要特征,包括心脏轴、肺动脉瓣血流峰值速度、心胸比、肺动脉瓣环直径、右心室舒张末期直径和主动脉瓣环直径,是在检测CHD患者时为模型增加更多预测价值的关键特征。使用RF的ML在产前CHD筛查中可提供更高的敏感性,性能良好。将ML算法纳入胎儿超声心动图检查可能会进一步规范CHD的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验