Suppr超能文献

使用卷积神经网络在多样的珊瑚礁声景中快速检测鱼类叫声a)。

Rapid detection of fish calls within diverse coral reef soundscapes using a convolutional neural networka).

作者信息

McCammon Seth, Formel Nathan, Jarriel Sierra, Mooney T Aran

机构信息

Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

出版信息

J Acoust Soc Am. 2025 Mar 1;157(3):1665-1683. doi: 10.1121/10.0035829.

Abstract

The quantity of passive acoustic data collected in marine environments is rapidly expanding; however, the software developments required to meaningfully process large volumes of soundscape data have lagged behind. A significant bottleneck in the analysis of biological patterns in soundscape datasets is the human effort required to identify and annotate individual acoustic events, such as diverse and abundant fish sounds. This paper addresses this problem by training a YOLOv5 convolutional neural network (CNN) to automate the detection of tonal and pulsed fish calls in spectrogram data from five tropical coral reefs in the U.S. Virgin Islands, building from over 22 h of annotated data with 55 015 fish calls. The network identified fish calls with a mean average precision of up to 0.633, while processing data over 25× faster than it is recorded. We compare the CNN to human annotators on five datasets, including three used for training and two untrained reefs. CNN-detected call rates reflected baseline reef fish and coral cover observations; and both expected biological (e.g., crepuscular choruses) and novel call patterns were identified. Given the importance of reef-fish communities, their bioacoustic patterns, and the impending biodiversity crisis, these results provide a vital and scalable means to assess reef community health.

摘要

在海洋环境中收集的被动声学数据量正在迅速增长;然而,有意义地处理大量声景数据所需的软件开发却滞后了。声景数据集中生物模式分析的一个重大瓶颈是识别和标注单个声学事件(如多样且丰富的鱼类声音)所需的人力。本文通过训练一个YOLOv5卷积神经网络(CNN)来解决这个问题,该网络可自动检测来自美属维尔京群岛五个热带珊瑚礁的频谱图数据中的音调型和脉冲型鱼类叫声,训练数据基于超过22小时的带注释数据,其中包含55015个鱼类叫声。该网络识别鱼类叫声的平均精度高达0.633,同时处理数据的速度比记录速度快25倍以上。我们在五个数据集上比较了CNN和人工标注员,其中包括三个用于训练的数据集和两个未训练的珊瑚礁数据集。CNN检测到的叫声率反映了基线礁鱼和珊瑚覆盖情况;同时还识别出了预期的生物模式(如黄昏合唱)和新的叫声模式。鉴于礁鱼群落、它们的生物声学模式的重要性以及迫在眉睫的生物多样性危机,这些结果提供了一种至关重要且可扩展的手段来评估珊瑚礁群落健康状况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验