Williams Ben, Balvanera Santiago M, Sethi Sarab S, Lamont Timothy A C, Jompa Jamaluddin, Prasetya Mochyudho, Richardson Laura, Chapuis Lucille, Weschke Emma, Hoey Andrew, Beldade Ricardo, Mills Suzanne C, Haguenauer Anne, Zuberer Frederic, Simpson Stephen D, Curnick David, Jones Kate E
Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.
Zoological Society of London, Regents Park, London, United Kingdom.
PLoS Comput Biol. 2025 Apr 28;21(4):e1013029. doi: 10.1371/journal.pcbi.1013029. eCollection 2025 Apr.
Passive acoustic monitoring can offer insights into the state of coral reef ecosystems at low-costs and over extended temporal periods. Comparison of whole soundscape properties can rapidly deliver broad insights from acoustic data, in contrast to detailed but time-consuming analysis of individual bioacoustic events. However, a lack of effective automated analysis for whole soundscape data has impeded progress in this field. Here, we show that machine learning (ML) can be used to unlock greater insights from reef soundscapes. We showcase this on a diverse set of tasks using three biogeographically independent datasets, each containing fish community (high or low), coral cover (high or low) or depth zone (shallow or mesophotic) classes. We show supervised learning can be used to train models that can identify ecological classes and individual sites from whole soundscapes. However, we report unsupervised clustering achieves this whilst providing a more detailed understanding of ecological and site groupings within soundscape data. We also compare three different approaches for extracting feature embeddings from soundscape recordings for input into ML algorithms: acoustic indices commonly used by soundscape ecologists, a pretrained convolutional neural network (P-CNN) trained on 5.2 million hrs of YouTube audio, and CNN's which were trained on each individual task (T-CNN). Although the T-CNN performs marginally better across tasks, we reveal that the P-CNN offers a powerful tool for generating insights from marine soundscape data as it requires orders of magnitude less computational resources whilst achieving near comparable performance to the T-CNN, with significant performance improvements over the acoustic indices. Our findings have implications for soundscape ecology in any habitat.
被动声学监测能够以低成本、长时间地深入了解珊瑚礁生态系统的状况。与对单个生物声学事件进行详细但耗时的分析相比,对整个声景特性进行比较能够快速从声学数据中获得广泛的见解。然而,缺乏针对整个声景数据的有效自动分析方法阻碍了该领域的进展。在此,我们表明机器学习(ML)可用于从珊瑚礁声景中获取更多见解。我们使用三个生物地理上独立的数据集,在一系列不同的任务中展示了这一点,每个数据集包含鱼类群落(高或低)、珊瑚覆盖率(高或低)或深度区域(浅或中光层)类别。我们表明监督学习可用于训练能够从整个声景中识别生态类别和单个地点的模型。然而,我们报告无监督聚类在实现这一目标的同时,还能更详细地了解声景数据中的生态和地点分组。我们还比较了从声景录音中提取特征嵌入以输入到ML算法的三种不同方法:声景生态学家常用的声学指标、在520万小时的YouTube音频上训练的预训练卷积神经网络(P-CNN),以及针对每个单独任务训练的CNN(T-CNN)。尽管T-CNN在各项任务中的表现略好,但我们发现P-CNN为从海洋声景数据中生成见解提供了一个强大的工具,因为它所需的计算资源少几个数量级,同时实现了与T-CNN近乎相当的性能,且在性能上比声学指标有显著提升。我们的研究结果对任何栖息地的声景生态学都有启示意义。