文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于检测微波热疗中热点的直接学习方法。

A direct learning approach for detection of hotspots in microwave hyperthermia treatments.

作者信息

Onal Hulusi, Girgin Enes, Doğu Semih, Yilmaz Tuba, Akinci Mehmet Nuri

机构信息

Department of Electronics and Communication Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.

Burgan Bank, Maslak, Istanbul, 34485, Turkey.

出版信息

Med Biol Eng Comput. 2025 Mar 11. doi: 10.1007/s11517-025-03343-9.


DOI:10.1007/s11517-025-03343-9
PMID:40067423
Abstract

This paper presents a computational study for detecting whether the temperature values of the breast tissues are exceeding a threshold using deep learning (DL) during microwave hyperthermia (MH) treatments. The proposed model has a deep convolutional encoder-decoder architecture, which gets differential scattered field data as input and gives an image showing the cells exceeding the threshold. The data are generated by an in-house data generator, which mimics temperature distribution in the MH problem. The model is also tested with real temperature distribution obtained from electromagnetic-thermal simulations performed in commercial software. The results show that the model reaches an average accuracy score of 0.959 and 0.939 under 40 dB and 30 dB signal-to-noise ratio (SNR), respectively. The results are also compared with the Born iterative method (BIM), which is combined with some different conventional regularization methods. The results show that the proposed DL model outperforms the conventional methods and reveals the strong regularization capabilities of the data-driven methods for temperature monitoring applications.

摘要

本文提出了一项计算研究,用于在微波热疗(MH)治疗期间使用深度学习(DL)检测乳腺组织的温度值是否超过阈值。所提出的模型具有深度卷积编码器-解码器架构,它将差分散射场数据作为输入,并给出显示超过阈值的细胞的图像。数据由内部数据生成器生成,该生成器模拟MH问题中的温度分布。该模型还使用从商业软件中进行的电磁热模拟获得的实际温度分布进行测试。结果表明,该模型在40 dB和30 dB信噪比(SNR)下分别达到了0.959和0.939的平均准确率得分。结果还与结合了一些不同传统正则化方法的玻恩迭代法(BIM)进行了比较。结果表明,所提出的DL模型优于传统方法,并揭示了数据驱动方法在温度监测应用中的强大正则化能力。

相似文献

[1]
A direct learning approach for detection of hotspots in microwave hyperthermia treatments.

Med Biol Eng Comput. 2025-3-11

[2]
Anti-jamming thermoacoustic imaging based on fiber Bragg grating ultrasonic detection and photoelectric conversion triggering.

Med Phys. 2025-7

[3]
A deep learning approach to estimate x-ray scatter in digital breast tomosynthesis: From phantom models to clinical applications.

Med Phys. 2023-8

[4]
Synergistic microwave hyperthermia treatment for subcutaneous deep breast cancer using conformal array antennas and a microwave-thermal-sensitive nanomaterial.

J Mater Chem B. 2025-1-2

[5]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[6]
Noise-aware system generative model (NASGM): positron emission tomography (PET) image simulation framework with observer validation studies.

Med Phys. 2025-7

[7]
Short-Term Memory Impairment

2025-1

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[10]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

本文引用的文献

[1]
Hyperthermia Treatment Monitoring via Deep Learning Enhanced Microwave Imaging: A Numerical Assessment.

Cancers (Basel). 2023-3-11

[2]
Microwave Imaging by Deep Learning Network: Feasibility and Training Method.

IEEE Trans Antennas Propag. 2020-7

[3]
Quantitative Interpretation of UWB Radar Images for Non-Invasive Tissue Temperature Estimation during Hyperthermia.

Diagnostics (Basel). 2021-4-30

[4]
A Novel Approach on Microwave Hyperthermia.

Diagnostics (Basel). 2021-3-10

[5]
A Pilot Study of the Impact of Microwave Ablation on the Dielectric Properties of Breast Tissue.

Sensors (Basel). 2020-10-6

[6]
Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia.

Int J Hyperthermia. 2020

[7]
Ultra-Wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range.

Sensors (Basel). 2019-4-10

[8]
Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy.

IEEE Trans Biomed Eng. 2017-5-8

[9]
Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview.

Sensors (Basel). 2016-7-22

[10]
Real-time microwave imaging of differential temperature for thermal therapy monitoring.

IEEE Trans Biomed Eng. 2014-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索