文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

猪组织和血液在微波频段的超宽带温度相关介电谱。

Ultra-Wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range.

机构信息

Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany.

Department of Biomedical Technology, Faculty of Biomedical Engineering, CTU in Prague, 272 01 Kladno, Czech Republic.

出版信息

Sensors (Basel). 2019 Apr 10;19(7):1707. doi: 10.3390/s19071707.


DOI:10.3390/s19071707
PMID:30974770
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6479484/
Abstract

The knowledge of frequency and temperature dependent dielectric properties of tissue is essential to develop ultra-wideband diagnostic technologies, such as a non-invasive temperature monitoring system during hyperthermia treatment. To this end, we characterized the dielectric properties of animal liver, muscle, fat and blood in the microwave frequency range from 0.5 GHz to 7 GHz and in the temperature range between 30 °C and 50 °C. The measured data were modeled to a two-pole Cole-Cole model and a second-order polynomial was introduced to fit the Cole-Cole parameters as a function of temperature. The parametric model provides access to the dielectric properties of tissue at any frequency and temperature in the specified range.

摘要

动物肝、肌肉、脂肪和血液的介电特性在微波频率范围 0.5GHz 到 7GHz 以及温度范围 30°C 到 50°C 下的频率和温度相关特性的知识对于开发超宽带诊断技术至关重要,如在热疗期间的非侵入式温度监测系统。为此,我们对动物肝、肌肉、脂肪和血液的介电特性进行了表征。测量数据被建模为双电Cole-Cole 模型,并引入了一个二次多项式来拟合 Cole-Cole 参数作为温度的函数。参数模型可以在指定的范围内的任何频率和温度下获取组织的介电特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/36e997aec5b0/sensors-19-01707-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/3f293380a065/sensors-19-01707-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/5b70267a5bb2/sensors-19-01707-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/41ba5dd5152e/sensors-19-01707-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/88091ed0e637/sensors-19-01707-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/35e4abbd2650/sensors-19-01707-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/4deb4acfa3f9/sensors-19-01707-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/c297a4817d55/sensors-19-01707-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/0a54ebe79626/sensors-19-01707-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/875374c231a7/sensors-19-01707-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/5579805c5e2f/sensors-19-01707-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/27408dc40253/sensors-19-01707-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/61b6eecb3cfb/sensors-19-01707-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/884392f6cac0/sensors-19-01707-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/ccce4333016f/sensors-19-01707-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/b52e47f6a365/sensors-19-01707-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/23d93bf4b4b3/sensors-19-01707-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/7ef42f2bf44f/sensors-19-01707-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/6d32563d2055/sensors-19-01707-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/36e997aec5b0/sensors-19-01707-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/3f293380a065/sensors-19-01707-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/5b70267a5bb2/sensors-19-01707-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/41ba5dd5152e/sensors-19-01707-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/88091ed0e637/sensors-19-01707-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/35e4abbd2650/sensors-19-01707-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/4deb4acfa3f9/sensors-19-01707-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/c297a4817d55/sensors-19-01707-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/0a54ebe79626/sensors-19-01707-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/875374c231a7/sensors-19-01707-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/5579805c5e2f/sensors-19-01707-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/27408dc40253/sensors-19-01707-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/61b6eecb3cfb/sensors-19-01707-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/884392f6cac0/sensors-19-01707-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/ccce4333016f/sensors-19-01707-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/b52e47f6a365/sensors-19-01707-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/23d93bf4b4b3/sensors-19-01707-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/7ef42f2bf44f/sensors-19-01707-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/6d32563d2055/sensors-19-01707-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efb/6479484/36e997aec5b0/sensors-19-01707-g019.jpg

相似文献

[1]
Ultra-Wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range.

Sensors (Basel). 2019-4-10

[2]
Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

Phys Med Biol. 2006-4-7

[3]
Dielectric properties of muscle and liver from 500 MHz-40 GHz.

Electromagn Biol Med. 2013-6

[4]
Controlled Measurement Setup for Ultra-Wideband Dielectric Modeling of Muscle Tissue in 20-45 °C Temperature Range.

Sensors (Basel). 2021-11-17

[5]
Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.

Phys Med Biol. 2007-8-7

[6]
Cole-Cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies.

Phys Med Biol. 2010-7-20

[7]
Broadband lung dielectric properties over the ablative temperature range: Experimental measurements and parametric models.

Med Phys. 2019-8-10

[8]
A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.

Phys Med Biol. 2007-5-21

[9]
Microwave dielectric properties of normal, fibroelastotic, and malignant human lung tissue.

Biomed Phys Eng Express. 2024-8-14

[10]
Dielectric spectroscopy of Baijiu over 2-20 GHz using an open-ended coaxial probe.

J Food Sci. 2021-6

引用本文的文献

[1]
Integrating Complex Permittivity Measurements with Histological Analysis for Advanced Tissue Characterization.

Sensors (Basel). 2025-4-21

[2]
A direct learning approach for detection of hotspots in microwave hyperthermia treatments.

Med Biol Eng Comput. 2025-3-11

[3]
Experimental Validation of Realistic Measurement Setup for Quantitative UWB-Guided Hyperthermia Temperature Monitoring.

Sensors (Basel). 2024-9-11

[4]
Review of Microwave Near-Field Sensing and Imaging Devices in Medical Applications.

Sensors (Basel). 2024-7-12

[5]
Hyperthermia Treatment Monitoring via Deep Learning Enhanced Microwave Imaging: A Numerical Assessment.

Cancers (Basel). 2023-3-11

[6]
Temperature dependence of dielectric properties of blood at 10 Hz-100 MHz.

Front Physiol. 2022-10-26

[7]
Dynamic Impedance Analysis of Intestinal Anastomosis during High-Frequency Electric Field Welding Process.

Sensors (Basel). 2022-5-28

[8]
Controlled Measurement Setup for Ultra-Wideband Dielectric Modeling of Muscle Tissue in 20-45 °C Temperature Range.

Sensors (Basel). 2021-11-17

[9]
Quantitative Interpretation of UWB Radar Images for Non-Invasive Tissue Temperature Estimation during Hyperthermia.

Diagnostics (Basel). 2021-4-30

[10]
Expansion of the Nodal-Adjoint Method for Simple and Efficient Computation of the 2D Tomographic Imaging Jacobian Matrix.

Sensors (Basel). 2021-1-22

本文引用的文献

[1]
Preliminary Investigations for Non-invasive Temperature Change Detection in Thermotherapy by Means of UWB Microwave Radar.

Annu Int Conf IEEE Eng Med Biol Soc. 2018-7

[2]
Comparison of X-ray-Mammography and Planar UWB Microwave Imaging of the Breast: First Results from a Patient Study.

Diagnostics (Basel). 2018-8-21

[3]
Microwave Breast Imaging: Clinical Advances and Remaining Challenges.

IEEE Trans Biomed Eng. 2018-2-26

[4]
Differential Ultra-Wideband Microwave Imaging: Principle Application Challenges.

Sensors (Basel). 2018-7-3

[5]
Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices.

Diagnostics (Basel). 2018-6-5

[6]
Dielectric characterization of healthy and malignant colon tissues in the 0.5-18 GHz frequency band.

Phys Med Biol. 2016-10-21

[7]
Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview.

Sensors (Basel). 2016-7-22

[8]
MARIA M4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection.

J Med Imaging (Bellingham). 2016-7

[9]
Accurate in vivo dielectric properties of liver from 500 MHz to 40 GHz and their correlation to ex vivo measurements.

Electromagn Biol Med. 2016

[10]
Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination.

IEEE Trans Microw Theory Tech. 2016-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索