Fu Yi, Land Max, Kavlashvili Tamar, Cui Ruobing, Kim Minsoo, DeBitetto Emily, Lieber Toby, Ryu Keun Woo, Choi Elim, Masilionis Ignas, Saha Rahul, Takizawa Meril, Baker Daphne, Tigano Marco, Lareau Caleb A, Reznik Ed, Sharma Roshan, Chaligne Ronan, Thompson Craig B, Pe'er Dana, Sfeir Agnel
Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Cell. 2025 May 15;188(10):2778-2793.e21. doi: 10.1016/j.cell.2025.02.009. Epub 2025 Mar 10.
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled precise base substitutions and the efficient elimination of genomes carrying pathogenic mutations. However, reconstituting mtDNA deletions linked to mitochondrial myopathies remains challenging. Here, we engineered mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. Using mitochondrial EJ (mito-EJ) and mito-ScaI, we generated a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion across the full spectrum of heteroplasmy. Investigating these cells revealed a critical threshold of ∼75% deleted genomes, beyond which oxidative phosphorylation (OXPHOS) protein depletion, metabolic disruption, and impaired growth in galactose-containing media were observed. Single-cell multiomic profiling identified two distinct nuclear gene deregulation responses: one triggered at the deletion threshold and another progressively responding to heteroplasmy. Ultimately, we show that our method enables the modeling of disease-associated mtDNA deletions across cell types and could inform the development of targeted therapies.
线粒体DNA(mtDNA)基因操作方面的最新突破使得精确的碱基替换以及有效消除携带致病突变的基因组成为可能。然而,重建与线粒体肌病相关的mtDNA缺失仍然具有挑战性。在这里,我们通过共表达末端连接(EJ)机制和靶向核酸内切酶,在人类细胞中构建了mtDNA缺失。利用线粒体EJ(mito-EJ)和线粒体ScaI,我们生成了一组克隆细胞系,这些细胞系在整个异质性范围内都存在约3.5 kb的mtDNA缺失。对这些细胞的研究揭示了一个关键阈值,即约75%的缺失基因组,超过这个阈值就会观察到氧化磷酸化(OXPHOS)蛋白耗竭、代谢紊乱以及在含半乳糖培养基中生长受损。单细胞多组学分析确定了两种不同的核基因失调反应:一种在缺失阈值时触发,另一种则对异质性逐渐做出反应。最终,我们表明我们的方法能够跨细胞类型对与疾病相关的mtDNA缺失进行建模,并为靶向治疗的开发提供信息。