Suppr超能文献

线粒体和核基因表达过程之间的动力学二分法。

A kinetic dichotomy between mitochondrial and nuclear gene expression processes.

机构信息

Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Mol Cell. 2024 Apr 18;84(8):1541-1555.e11. doi: 10.1016/j.molcel.2024.02.028. Epub 2024 Mar 18.

Abstract

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.

摘要

氧化磷酸化(OXPHOS)复合物由线粒体和核 DNA 编码,是细胞 ATP 的重要产生者,但核和线粒体基因表达步骤如何协调以实现平衡的 OXPHOS 亚基生物发生仍未解决。在这里,我们对人类核和线粒体信使 RNA(mt-mRNA)的生命周期进行了平行的定量分析,包括转录物的产生、加工、核糖体结合和降解。几乎每个表达阶段的动力学速率在不同隔室之间都有明显差异。与核 mRNA 相比,mt-mRNA 的产量高 1100 倍,降解速度快 7 倍,积累量高 160 倍。定量建模和线粒体因子 LRPPRC 和 FASTKD5 的耗竭确定了线粒体调控控制的关键节点,揭示了线粒体和核之间表达差异本质上源于人类线粒体前体 RNA 的高度多顺反子性质。我们提出,解决这些差异需要线粒体翻译速度慢 100 倍,这凸显了线粒体核糖体作为线粒体和核共同调控的交汇点。

相似文献

1
4
Organization and Regulation of Mitochondrial Protein Synthesis.线粒体蛋白合成的组织和调节。
Annu Rev Biochem. 2016 Jun 2;85:77-101. doi: 10.1146/annurev-biochem-060815-014334. Epub 2016 Jan 18.
9
Monitoring mitochondrial translation by pulse SILAC.脉冲 SILAC 监测线粒体翻译。
J Biol Chem. 2023 Feb;299(2):102865. doi: 10.1016/j.jbc.2022.102865. Epub 2023 Jan 2.
10
The process of mammalian mitochondrial protein synthesis.哺乳动物线粒体蛋白质合成的过程。
Cell Tissue Res. 2017 Jan;367(1):5-20. doi: 10.1007/s00441-016-2456-0. Epub 2016 Jul 14.

引用本文的文献

4
5
Mitochondria - the CEO of the cell.线粒体——细胞的首席执行官。
J Cell Sci. 2025 May 1;138(9). doi: 10.1242/jcs.263403.
6
Emerging mechanisms of human mitochondrial translation regulation.人类线粒体翻译调控的新机制。
Trends Biochem Sci. 2025 Jul;50(7):566-584. doi: 10.1016/j.tibs.2025.03.007. Epub 2025 Apr 11.
8
Mitochondrial genetics, signalling and stress responses.线粒体遗传学、信号传导与应激反应。
Nat Cell Biol. 2025 Mar;27(3):393-407. doi: 10.1038/s41556-025-01625-w. Epub 2025 Mar 10.

本文引用的文献

2
Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA.单核体结构揭示了线粒体 DNA 的异质包装。
Nat Struct Mol Biol. 2024 Mar;31(3):568-577. doi: 10.1038/s41594-024-01225-6. Epub 2024 Feb 12.
4
Hallmarks of aging: An expanding universe.衰老的特征:一个不断扩大的领域。
Cell. 2023 Jan 19;186(2):243-278. doi: 10.1016/j.cell.2022.11.001. Epub 2023 Jan 3.
6
The human mitochondrial genome contains a second light strand promoter.人类线粒体基因组包含第二个轻链启动子。
Mol Cell. 2022 Oct 6;82(19):3646-3660.e9. doi: 10.1016/j.molcel.2022.08.011. Epub 2022 Aug 30.
8
Organization and expression of the mammalian mitochondrial genome.哺乳动物线粒体基因组的组织与表达。
Nat Rev Genet. 2022 Oct;23(10):606-623. doi: 10.1038/s41576-022-00480-x. Epub 2022 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验