Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
Mol Cell. 2024 Apr 18;84(8):1541-1555.e11. doi: 10.1016/j.molcel.2024.02.028. Epub 2024 Mar 18.
Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.
氧化磷酸化(OXPHOS)复合物由线粒体和核 DNA 编码,是细胞 ATP 的重要产生者,但核和线粒体基因表达步骤如何协调以实现平衡的 OXPHOS 亚基生物发生仍未解决。在这里,我们对人类核和线粒体信使 RNA(mt-mRNA)的生命周期进行了平行的定量分析,包括转录物的产生、加工、核糖体结合和降解。几乎每个表达阶段的动力学速率在不同隔室之间都有明显差异。与核 mRNA 相比,mt-mRNA 的产量高 1100 倍,降解速度快 7 倍,积累量高 160 倍。定量建模和线粒体因子 LRPPRC 和 FASTKD5 的耗竭确定了线粒体调控控制的关键节点,揭示了线粒体和核之间表达差异本质上源于人类线粒体前体 RNA 的高度多顺反子性质。我们提出,解决这些差异需要线粒体翻译速度慢 100 倍,这凸显了线粒体核糖体作为线粒体和核共同调控的交汇点。