Wang Yiqun, Tian Yuqing, Yang Xu, Yu Feng, Zheng Jianting
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
Nat Commun. 2025 Mar 11;16(1):2408. doi: 10.1038/s41467-025-57732-7.
Bacterial antiviral STANDs (Avs) are evolutionarily related to the nucleotide-binding oligomerization domain (NOD)-like receptors widely distributed in immune systems across animals and plants. EfAvs5, a type 5 Avs from Escherichia fergusonii, contains an N-terminal SIR2 effector domain, a NOD, and a C-terminal sensor domain, conferring protection against diverse phage invasions. Despite the established roles of SIR2 and STAND in prokaryotic and eukaryotic immunity, the mechanism underlying their collaboration remains unclear. Here we present cryo-EM structures of EfAvs5 filaments, elucidating the mechanisms of dimerization, filamentation, filament bundling, ATP binding, and NAD hydrolysis, all of which are crucial for anti-phage defense. The SIR2 and NOD domains engage in intra- and inter-dimer interaction to form an individual filament, while the outward C-terminal sensor domains contribute to bundle formation. Filamentation potentially stabilizes the dimeric SIR2 configuration, thereby activating the NADase activity of EfAvs5. Furthermore, we identify the nucleotide kinase gp1.7 of phage T7 as an activator of EfAvs5, demonstrating its ability to induce filamentation and NADase activity. Together, we uncover the filament assembly of Avs5 as a unique mechanism to switch enzyme activities and perform anti-phage defenses.
细菌抗病毒STAND结构域(Avs)在进化上与核苷酸结合寡聚化结构域(NOD)样受体相关,后者广泛分布于动植物的免疫系统中。EfAvs5是弗格森埃希氏菌的一种5型Avs,包含一个N端SIR2效应结构域、一个NOD和一个C端传感结构域,可抵御多种噬菌体的入侵。尽管SIR2和STAND在原核和真核免疫中已确立了作用,但其协同作用的潜在机制仍不清楚。在这里,我们展示了EfAvs5细丝的冷冻电镜结构,阐明了二聚化、细丝形成、细丝捆绑、ATP结合和NAD水解的机制,所有这些对于抗噬菌体防御都至关重要。SIR2和NOD结构域参与二聚体内和二聚体间的相互作用以形成单根细丝,而向外的C端传感结构域则有助于细丝束的形成。细丝形成可能会稳定二聚体SIR2的构型,从而激活EfAvs5的NAD酶活性。此外,我们确定噬菌体T7的核苷酸激酶gp1.7是EfAvs5的激活剂,证明其能够诱导细丝形成和NAD酶活性。总之,我们揭示了Avs5的细丝组装是一种独特的机制,可用于切换酶活性并进行抗噬菌体防御。