State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Nat Commun. 2024 Mar 27;15(1):2692. doi: 10.1038/s41467-024-47030-z.
The Silent Information Regulator 2 (SIR2) protein is widely implicated in antiviral response by depleting the cellular metabolite NAD. The defense-associated sirtuin 2 (DSR2) effector, a SIR2 domain-containing protein, protects bacteria from phage infection by depleting NAD, while an anti-DSR2 protein (DSR anti-defense 1, DSAD1) is employed by some phages to evade this host defense. The NADase activity of DSR2 is unleashed by recognizing the phage tail tube protein (TTP). However, the activation and inhibition mechanisms of DSR2 are unclear. Here, we determine the cryo-EM structures of DSR2 in multiple states. DSR2 is arranged as a dimer of dimers, which is facilitated by the tetramerization of SIR2 domains. Moreover, the DSR2 assembly is essential for activating the NADase function. The activator TTP binding would trigger the opening of the catalytic pocket and the decoupling of the N-terminal SIR2 domain from the C-terminal domain (CTD) of DSR2. Importantly, we further show that the activation mechanism is conserved among other SIR2-dependent anti-phage systems. Interestingly, the inhibitor DSAD1 mimics TTP to trap DSR2, thus occupying the TTP-binding pocket and inhibiting the NADase function. Together, our results provide molecular insights into the regulatory mechanism of SIR2-dependent NAD depletion in antiviral immunity.
沉默信息调节因子 2(SIR2)蛋白通过消耗细胞代谢物 NAD 广泛参与抗病毒反应。防御相关的 SIR2 效应因子(DSR2),一种包含 SIR2 结构域的蛋白,通过消耗 NAD 来保护细菌免受噬菌体感染,而一些噬菌体则利用抗 DSR2 蛋白(DSR 防御 1,DSAD1)来逃避这种宿主防御。DSR2 的 NAD 酶活性通过识别噬菌体尾管蛋白(TTP)释放。然而,DSR2 的激活和抑制机制尚不清楚。在这里,我们确定了 DSR2 在多种状态下的冷冻电镜结构。DSR2 排列为二聚体的二聚体,这是由 SIR2 结构域的四聚化促成的。此外,DSR2 组装对于激活 NAD 酶功能是必不可少的。激活剂 TTP 结合会触发催化口袋的打开,并使 DSR2 的 N 端 SIR2 结构域与 C 端结构域(CTD)解耦。重要的是,我们进一步表明,这种激活机制在其他依赖 SIR2 的抗噬菌体系统中是保守的。有趣的是,抑制剂 DSAD1 模拟 TTP 来捕获 DSR2,从而占据 TTP 结合口袋并抑制 NAD 酶功能。总之,我们的研究结果提供了分子水平上的深入了解,阐明了 SIR2 依赖性 NAD 消耗在抗病毒免疫中的调控机制。